All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.util.IntroSelector Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util;

import java.util.Comparator;

/** Implementation of the quick select algorithm.
 *  

It uses the median of the first, middle and last values as a pivot and * falls back to a median of medians when the number of recursion levels exceeds * {@code 2 lg(n)}, as a consequence it runs in linear time on average.

* @lucene.internal */ public abstract class IntroSelector extends Selector { @Override public final void select(int from, int to, int k) { checkArgs(from, to, k); final int maxDepth = 2 * MathUtil.log(to - from, 2); quickSelect(from, to, k, maxDepth); } int slowSelect(int from, int to, int k) { return medianOfMediansSelect(from, to-1, k); } int medianOfMediansSelect(int left, int right, int k) { do { // Defensive check, this is also checked in the calling // method. Including here so this method can be used // as a self contained quickSelect implementation. if (left == right) { return left; } int pivotIndex = pivot(left, right); pivotIndex = partition(left, right, k, pivotIndex); if (k == pivotIndex) { return k; } else if (k < pivotIndex) { right = pivotIndex-1; } else { left = pivotIndex+1; } } while (left != right); return left; } private int partition(int left, int right, int k, int pivotIndex) { setPivot(pivotIndex); swap(pivotIndex, right); int storeIndex = left; for (int i = left; i < right; i++) { if (comparePivot(i) > 0) { swap(storeIndex, i); storeIndex++; } } int storeIndexEq = storeIndex; for (int i = storeIndex; i < right; i++) { if (comparePivot(i) == 0) { swap(storeIndexEq, i); storeIndexEq++; } } swap(right, storeIndexEq); if (k < storeIndex) { return storeIndex; } else if (k <= storeIndexEq) { return k; } return storeIndexEq; } private int pivot(int left, int right) { if (right - left < 5) { int pivotIndex = partition5(left, right); return pivotIndex; } for (int i = left; i <= right; i=i+5) { int subRight = i + 4; if (subRight > right) { subRight = right; } int median5 = partition5(i, subRight); swap(median5, left + ((i-left)/5)); } int mid = ((right - left) / 10) + left + 1; int to = left + ((right - left)/5); return medianOfMediansSelect(left, to, mid); } // selects the median of a group of at most five elements, // implemented using insertion sort. Efficient due to // bounded nature of data set. private int partition5(int left, int right) { int i = left + 1; while( i <= right) { int j = i; while (j > left && compare(j-1,j)>0) { swap(j-1, j); j--; } i++; } return (left + right) >>> 1; } private void quickSelect(int from, int to, int k, int maxDepth) { assert from <= k; assert k < to; if (to - from == 1) { return; } if (--maxDepth < 0) { slowSelect(from, to, k); return; } final int mid = (from + to) >>> 1; // heuristic: we use the median of the values at from, to-1 and mid as a pivot if (compare(from, to - 1) > 0) { swap(from, to - 1); } if (compare(to - 1, mid) > 0) { swap(to - 1, mid); if (compare(from, to - 1) > 0) { swap(from, to - 1); } } setPivot(to - 1); int left = from + 1; int right = to - 2; for (;;) { while (comparePivot(left) > 0) { ++left; } while (left < right && comparePivot(right) <= 0) { --right; } if (left < right) { swap(left, right); --right; } else { break; } } swap(left, to - 1); if (left == k) { return; } else if (left < k) { quickSelect(left + 1, to, k, maxDepth); } else { quickSelect(from, left, k, maxDepth); } } /** Compare entries found in slots i and j. * The contract for the returned value is the same as * {@link Comparator#compare(Object, Object)}. */ protected int compare(int i, int j) { setPivot(i); return comparePivot(j); } /** Save the value at slot i so that it can later be used as a * pivot, see {@link #comparePivot(int)}. */ protected abstract void setPivot(int i); /** Compare the pivot with the slot at j, similarly to * {@link #compare(int, int) compare(i, j)}. */ protected abstract int comparePivot(int j); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy