All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.locationtech.jts.noding.snapround.MCIndexSnapRounder Maven / Gradle / Ivy


/*
 * Copyright (c) 2016 Vivid Solutions.
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
 * and the Eclipse Distribution License is available at
 *
 * http://www.eclipse.org/org/documents/edl-v10.php.
 */
package org.locationtech.jts.noding.snapround;

import java.util.Collection;
import java.util.Iterator;
import java.util.List;

import org.locationtech.jts.algorithm.LineIntersector;
import org.locationtech.jts.algorithm.RobustLineIntersector;
import org.locationtech.jts.geom.Coordinate;
import org.locationtech.jts.geom.PrecisionModel;
import org.locationtech.jts.noding.InteriorIntersectionFinderAdder;
import org.locationtech.jts.noding.MCIndexNoder;
import org.locationtech.jts.noding.NodedSegmentString;
import org.locationtech.jts.noding.Noder;
import org.locationtech.jts.noding.NodingValidator;
import org.locationtech.jts.noding.SegmentString;

/**
 * Uses Snap Rounding to compute a rounded,
 * fully noded arrangement from a set of {@link SegmentString}s.
 * Implements the Snap Rounding technique described in 
 * papers by Hobby, Guibas & Marimont, and Goodrich et al.
 * Snap Rounding assumes that all vertices lie on a uniform grid;
 * hence the precision model of the input must be fixed precision,
 * and all the input vertices must be rounded to that precision.
 * 

* This implementation uses a monotone chains and a spatial index to * speed up the intersection tests. *

* This implementation appears to be fully robust using an integer precision model. * It will function with non-integer precision models, but the * results are not 100% guaranteed to be correctly noded. * * @version 1.7 */ public class MCIndexSnapRounder implements Noder { private final PrecisionModel pm; private LineIntersector li; private final double scaleFactor; private MCIndexNoder noder; private MCIndexPointSnapper pointSnapper; private Collection nodedSegStrings; public MCIndexSnapRounder(PrecisionModel pm) { this.pm = pm; li = new RobustLineIntersector(); li.setPrecisionModel(pm); scaleFactor = pm.getScale(); } public Collection getNodedSubstrings() { return NodedSegmentString.getNodedSubstrings(nodedSegStrings); } public void computeNodes(Collection inputSegmentStrings) { this.nodedSegStrings = inputSegmentStrings; noder = new MCIndexNoder(); pointSnapper = new MCIndexPointSnapper(noder.getIndex()); snapRound(inputSegmentStrings, li); // testing purposes only - remove in final version //checkCorrectness(inputSegmentStrings); } private void checkCorrectness(Collection inputSegmentStrings) { Collection resultSegStrings = NodedSegmentString.getNodedSubstrings(inputSegmentStrings); NodingValidator nv = new NodingValidator(resultSegStrings); try { nv.checkValid(); } catch (Exception ex) { ex.printStackTrace(); } } private void snapRound(Collection segStrings, LineIntersector li) { List intersections = findInteriorIntersections(segStrings, li); computeIntersectionSnaps(intersections); computeVertexSnaps(segStrings); } /** * Computes all interior intersections in the collection of {@link SegmentString}s, * and returns their {@link Coordinate}s. * * Does NOT node the segStrings. * * @return a list of Coordinates for the intersections */ private List findInteriorIntersections(Collection segStrings, LineIntersector li) { InteriorIntersectionFinderAdder intFinderAdder = new InteriorIntersectionFinderAdder(li); noder.setSegmentIntersector(intFinderAdder); noder.computeNodes(segStrings); return intFinderAdder.getInteriorIntersections(); } /** * Snaps segments to nodes created by segment intersections. */ private void computeIntersectionSnaps(Collection snapPts) { for (Iterator it = snapPts.iterator(); it.hasNext(); ) { Coordinate snapPt = (Coordinate) it.next(); HotPixel hotPixel = new HotPixel(snapPt, scaleFactor, li); pointSnapper.snap(hotPixel); } } /** * Snaps segments to all vertices. * * @param edges the list of segment strings to snap together */ public void computeVertexSnaps(Collection edges) { for (Iterator i0 = edges.iterator(); i0.hasNext(); ) { NodedSegmentString edge0 = (NodedSegmentString) i0.next(); computeVertexSnaps(edge0); } } /** * Snaps segments to the vertices of a Segment String. */ private void computeVertexSnaps(NodedSegmentString e) { Coordinate[] pts0 = e.getCoordinates(); for (int i = 0; i < pts0.length ; i++) { HotPixel hotPixel = new HotPixel(pts0[i], scaleFactor, li); boolean isNodeAdded = pointSnapper.snap(hotPixel, e, i); // if a node is created for a vertex, that vertex must be noded too if (isNodeAdded) { e.addIntersection(pts0[i], i); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy