All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.KShortestPaths Maven / Gradle / Ivy

/* ==========================================
 * JGraphT : a free Java graph-theory library
 * ==========================================
 *
 * Project Info:  http://jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (http://sourceforge.net/users/barak_naveh)
 *
 * (C) Copyright 2003-2010, by Barak Naveh and Contributors.
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
/* -------------------------
 * KShortestPaths.java
 * -------------------------
 * (C) Copyright 2007-2010, by France Telecom
 *
 * Original Author:  Guillaume Boulmier and Contributors.
 * Contributor(s):   John V. Sichi
 *
 * $Id$
 *
 * Changes
 * -------
 * 05-Jun-2007 : Initial revision (GB);
 * 05-Jul-2007 : Added support for generics (JVS);
 * 06-Dec-2010 : Bugfixes (GB);
 *
 */
package org.jgrapht.alg;

import java.util.*;

import org.jgrapht.*;


/**
 * The algorithm determines the k shortest simple paths in increasing order of
 * weight. Weights can be negative (but no negative cycle is allowed), and paths
 * can be constrained by a maximum number of edges. Multigraphs are allowed.
 *
 * 

The algorithm is a variant of the Bellman-Ford algorithm but instead of * only storing the best path it stores the "k" best paths at each pass, * yielding a complexity of O(k*n*(m^2)) where m is the number of edges and n is * the number of vertices. * * @author Guillaume Boulmier * @since July 5, 2007 */ public class KShortestPaths { /** * Graph on which shortest paths are searched. */ private Graph graph; private int nMaxHops; private int nPaths; private V startVertex; /** * Creates an object to compute ranking shortest paths between the start * vertex and others vertices. * * @param graph * @param startVertex * @param k number of paths to be computed. */ public KShortestPaths(Graph graph, V startVertex, int k) { this(graph, startVertex, k, graph.vertexSet().size() - 1); } /** * Creates an object to calculate ranking shortest paths between the start * vertex and others vertices. * * @param graph graph on which shortest paths are searched. * @param startVertex start vertex of the calculated paths. * @param nPaths number of ranking paths between the start vertex and an end * vertex. * @param nMaxHops maximum number of edges of the calculated paths. * * @throws NullPointerException if the specified graph or startVertex is * null. * @throws IllegalArgumentException if nPaths is negative or 0. * @throws IllegalArgumentException if nMaxHops is negative or 0. */ public KShortestPaths( Graph graph, V startVertex, int nPaths, int nMaxHops) { assertKShortestPathsFinder(graph, startVertex, nPaths, nMaxHops); this.graph = graph; this.startVertex = startVertex; this.nPaths = nPaths; this.nMaxHops = nMaxHops; } /** * Returns the k shortest simple paths in increasing order of weight. * * @param endVertex target vertex of the calculated paths. * * @return list of paths, or null if no path exists between the * start vertex and the end vertex. */ public List> getPaths(V endVertex) { assertGetPaths(endVertex); KShortestPathsIterator iter = new KShortestPathsIterator( this.graph, this.startVertex, endVertex, this.nPaths); // at the i-th pass the shortest paths with less (or equal) than i edges // are calculated. for ( int passNumber = 1; (passNumber <= this.nMaxHops) && iter.hasNext(); passNumber++) { iter.next(); } List> list = iter.getPathElements(endVertex); if (list == null) { return null; } List> pathList = new ArrayList>(); for (RankingPathElement element : list) { pathList.add(new PathWrapper(element)); } return pathList; } private void assertGetPaths(V endVertex) { if (endVertex == null) { throw new NullPointerException("endVertex is null"); } if (endVertex.equals(this.startVertex)) { throw new IllegalArgumentException( "The end vertex is the same as the start vertex!"); } if (!this.graph.vertexSet().contains(endVertex)) { throw new IllegalArgumentException( "Graph must contain the end vertex!"); } } private void assertKShortestPathsFinder( Graph graph, V startVertex, int nPaths, int nMaxHops) { if (graph == null) { throw new NullPointerException("graph is null"); } if (startVertex == null) { throw new NullPointerException("startVertex is null"); } if (nPaths <= 0) { throw new NullPointerException("nPaths is negative or 0"); } if (nMaxHops <= 0) { throw new NullPointerException("nMaxHops is negative or 0"); } } private class PathWrapper implements GraphPath { private RankingPathElement rankingPathElement; private List edgeList; PathWrapper(RankingPathElement rankingPathElement) { this.rankingPathElement = rankingPathElement; } // implement GraphPath @Override public Graph getGraph() { return graph; } // implement GraphPath @Override public V getStartVertex() { return startVertex; } // implement GraphPath @Override public V getEndVertex() { return rankingPathElement.getVertex(); } // implement GraphPath @Override public List getEdgeList() { if (edgeList == null) { edgeList = rankingPathElement.createEdgeListPath(); } return edgeList; } // implement GraphPath @Override public double getWeight() { return rankingPathElement.getWeight(); } // override Object @Override public String toString() { return getEdgeList().toString(); } } } // End KShortestPaths.java





© 2015 - 2024 Weber Informatics LLC | Privacy Policy