org.jgrapht.alg.KShortestPathsIterator Maven / Gradle / Ivy
/* ==========================================
* JGraphT : a free Java graph-theory library
* ==========================================
*
* Project Info: http://jgrapht.sourceforge.net/
* Project Creator: Barak Naveh (http://sourceforge.net/users/barak_naveh)
*
* (C) Copyright 2003-2010, by Barak Naveh and Contributors.
*
* This program and the accompanying materials are dual-licensed under
* either
*
* (a) the terms of the GNU Lesser General Public License version 2.1
* as published by the Free Software Foundation, or (at your option) any
* later version.
*
* or (per the licensee's choosing)
*
* (b) the terms of the Eclipse Public License v1.0 as published by
* the Eclipse Foundation.
*/
/* -------------------------
* KShortestPathsIterator.java
* -------------------------
* (C) Copyright 2007-2010, by France Telecom
*
* Original Author: Guillaume Boulmier and Contributors.
* Contributor(s): John V. Sichi
*
* $Id$
*
* Changes
* -------
* 05-Jun-2007 : Initial revision (GB);
* 05-Jul-2007 : Added support for generics (JVS);
* 06-Dec-2010 : Bugfixes (GB);
*
*/
package org.jgrapht.alg;
import java.util.*;
import org.jgrapht.*;
/**
* Helper class for {@link KShortestPaths}.
*
* @author Guillaume Boulmier
* @since July 5, 2007
*/
class KShortestPathsIterator
implements Iterator>
{
/**
* End vertex.
*/
private V endVertex;
/**
* Graph on which shortest paths are searched.
*/
private Graph graph;
/**
* Number of paths stored at each end vertex.
*/
private int k;
/**
* Vertices whose ranking shortest paths have been modified during the
* previous pass.
*/
private Set prevImprovedVertices;
/**
* Stores the paths that improved the vertex in the previous pass.
*/
private Map> prevSeenDataContainer;
/**
* Stores the vertices that have been seen during iteration and (optionally)
* some additional traversal info regarding each vertex. Key = vertex, value
* = RankingPathElementList
list of calculated paths.
*/
private Map> seenDataContainer;
/**
* Start vertex.
*/
private V startVertex;
private boolean startVertexEncountered;
/**
* Stores the number of the path.
*/
private int passNumber = 1;
/**
* @param graph graph on which shortest paths are searched.
* @param startVertex start vertex of the calculated paths.
* @param endVertex end vertex of the calculated paths.
* @param maxSize number of paths stored at end vertex of the graph.
*/
public KShortestPathsIterator(
Graph graph,
V startVertex,
V endVertex,
int maxSize)
{
assertKShortestPathsIterator(graph, startVertex);
this.graph = graph;
this.startVertex = startVertex;
this.endVertex = endVertex;
this.k = maxSize;
this.seenDataContainer = new HashMap>();
this.prevSeenDataContainer =
new HashMap>();
this.prevImprovedVertices = new HashSet();
}
/**
* @return true
if at least one path has been improved during
* the previous pass, false
otherwise.
*/
@Override public boolean hasNext()
{
if (!this.startVertexEncountered) {
encounterStartVertex();
}
return !(this.prevImprovedVertices.isEmpty());
}
/**
* Returns the list of vertices whose path has been improved during the
* current pass. Complexity =
*
*
* - O(
m*k*(m+n)
) where k
is the maximum number
* of shortest paths to compute, m
is the number of edges of
* the graph and n
is the number of vertices of the graph
*
*
* @see java.util.Iterator#next()
*/
@Override public Set next()
{
if (!this.startVertexEncountered) {
encounterStartVertex();
}
// at the i-th pass the shortest paths with i edges are calculated.
if (hasNext()) {
Set improvedVertices = new HashSet();
for (
Iterator iter = this.prevImprovedVertices.iterator();
iter.hasNext();)
{
V vertex = iter.next();
if (!vertex.equals(this.endVertex)) {
updateOutgoingVertices(vertex, improvedVertices);
}
}
savePassData(improvedVertices);
this.passNumber++;
return improvedVertices;
}
throw new NoSuchElementException();
}
/**
* Unsupported.
*
* @see java.util.Iterator#remove()
*/
@Override public void remove()
{
throw new UnsupportedOperationException();
}
/**
* Returns the path elements of the ranking shortest paths with less than
* nMaxHops
edges between the start vertex and the end vertex.
*
* @param endVertex end vertex.
*
* @return list of RankingPathElement
, or null
of
* no path exists between the start vertex and the end vertex.
*/
RankingPathElementList getPathElements(V endVertex)
{
return this.seenDataContainer.get(endVertex);
}
private void assertKShortestPathsIterator(Graph graph, V startVertex)
{
if (graph == null) {
throw new NullPointerException("graph is null");
}
if (startVertex == null) {
throw new NullPointerException("startVertex is null");
}
}
/**
* The first time we see a vertex, make up a new entry for it.
*
* @param vertex a vertex which has just been encountered.
* @param edge the edge via which the vertex was encountered.
*
* @return the new entry.
*/
private RankingPathElementList createSeenData(V vertex, E edge)
{
V oppositeVertex = Graphs.getOppositeVertex(this.graph, edge, vertex);
RankingPathElementList oppositeData =
this.prevSeenDataContainer.get(oppositeVertex);
// endVertex in argument to ensure that stored paths do not disconnect
// the end-vertex
RankingPathElementList data =
new RankingPathElementList(
this.graph,
this.k,
oppositeData,
edge,
this.endVertex);
return data;
}
/**
* Returns an iterator to loop over outgoing edges Edge
of the
* vertex.
*
* @param vertex
*
* @return .
*/
private Iterator edgesOfIterator(V vertex)
{
if (this.graph instanceof DirectedGraph, ?>) {
return ((DirectedGraph) this.graph).outgoingEdgesOf(vertex)
.iterator();
} else {
return this.graph.edgesOf(vertex).iterator();
}
}
/**
* Initializes the list of paths at the start vertex and adds an empty path.
*/
private void encounterStartVertex()
{
RankingPathElementList data =
new RankingPathElementList(
this.graph,
this.k,
new RankingPathElement(
this.startVertex));
this.seenDataContainer.put(this.startVertex, data);
this.prevSeenDataContainer.put(this.startVertex, data);
// initially the only vertex whose value is considered to have changed
// is the start vertex
this.prevImprovedVertices.add(this.startVertex);
this.startVertexEncountered = true;
}
private void savePassData(Set improvedVertices)
{
for (Iterator iter = improvedVertices.iterator(); iter.hasNext();) {
V vertex = iter.next();
RankingPathElementList pathElementList =
this.seenDataContainer.get(vertex);
RankingPathElementList improvedPaths =
new RankingPathElementList(
this.graph,
pathElementList.maxSize,
vertex);
for (
Iterator> pathIter =
pathElementList.iterator();
pathIter.hasNext();)
{
RankingPathElement path = pathIter.next();
if (path.getHopCount() == this.passNumber) {
// the path has just been computed.
improvedPaths.pathElements.add(path);
}
}
this.prevSeenDataContainer.put(vertex, improvedPaths);
}
this.prevImprovedVertices = improvedVertices;
}
/**
* Try to add the first paths to the specified vertex. These paths reached
* the specified vertex and ended with the specified edge. A new
* intermediary path is stored in the paths list of the specified vertex
* provided that the path can be extended to the end-vertex.
*
* @param vertex vertex reached by a path.
* @param edge edge reaching the vertex.
*/
private boolean tryToAddFirstPaths(V vertex, E edge)
{
// the vertex has not been reached yet
RankingPathElementList data = createSeenData(vertex, edge);
if (!data.isEmpty()) {
this.seenDataContainer.put(vertex, data);
return true;
}
return false;
}
/**
* Try to add new paths for the vertex. These new paths reached the
* specified vertex and ended with the specified edge. A new intermediary
* path is stored in the paths list of the specified vertex provided that
* the path can be extended to the end-vertex.
*
* @param vertex a vertex which has just been encountered.
* @param edge the edge via which the vertex was encountered.
*/
private boolean tryToAddNewPaths(V vertex, E edge)
{
RankingPathElementList data = this.seenDataContainer.get(vertex);
V oppositeVertex = Graphs.getOppositeVertex(this.graph, edge, vertex);
RankingPathElementList oppositeData =
this.prevSeenDataContainer.get(oppositeVertex);
return data.addPathElements(oppositeData, edge);
}
/**
* Updates outgoing vertices of the vertex. For each outgoing vertex, the
* new paths are obtained by concatenating the specified edge to the
* calculated paths of the specified vertex. If the weight of a new path is
* greater than the weight of any path stored so far at the outgoing vertex
* then the path is not added, otherwise it is added to the list of paths in
* increasing order of weight.
*
* Complexity =
*
*
* - O(
d(v)*k*(m+n)
) where d(v)
is the outgoing
* degree of the specified vertex, k
is the maximum number of
* shortest paths to compute, m
is the number of edges of the
* graph and n
is the number of vertices of the graph
*
*
* @param vertex
* @param improvedVertices
*/
private void updateOutgoingVertices(V vertex, Set improvedVertices)
{
// try to add new paths for the target vertices of the outgoing edges
// of the vertex in argument.
for (Iterator iter = edgesOfIterator(vertex); iter.hasNext();) {
E edge = iter.next();
V vertexReachedByEdge =
Graphs.getOppositeVertex(this.graph, edge,
vertex);
// check if the path does not loop over the start vertex.
if (!vertexReachedByEdge.equals(this.startVertex)) {
if (this.seenDataContainer.containsKey(vertexReachedByEdge)) {
boolean relaxed =
tryToAddNewPaths(vertexReachedByEdge,
edge);
if (relaxed) {
improvedVertices.add(vertexReachedByEdge);
}
} else {
boolean relaxed =
tryToAddFirstPaths(vertexReachedByEdge,
edge);
if (relaxed) {
improvedVertices.add(vertexReachedByEdge);
}
}
}
}
}
}
// End KShortestPathsIterator.java