All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.KuhnMunkresMinimalWeightBipartitePerfectMatching Maven / Gradle / Ivy

/* ==========================================
 * JGraphT : a free Java graph-theory library
 * ==========================================
 *
 * Project Info:  http://org.org.jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (http://sourceforge.net/users/barak_naveh)
 *
 * (C) Copyright 2003-2013, by Barak Naveh and Contributors.
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
/* -------------------------
 * KuhnMunkresMinimalWeightBipartitePerfectMatching.java
 * -------------------------
 *
 * Original Author:  Alexey Kudinkin
 * Contributor(s):
 *
 */
package org.jgrapht.alg;

import java.util.*;

import org.jgrapht.*;
import org.jgrapht.alg.interfaces.*;


/**
 * Kuhn-Munkres algorithm (named in honor of Harold Kuhn and James Munkres)
 * solving assignment problem also known as hungarian algorithm
 * (in the honor of hungarian mathematicians Dénes K?nig and Jen? Egerváry).
 * It's running time O(V^3).
 *
 * 

Assignment problem could be set as follows: * *

Given * complete bipartite graph G = (S, T; E), such that |S| = |T|, and each * edge has non-negative cost c(i, j), find perfect * matching of minimal cost.

* * @author Alexey Kudinkin */ public class KuhnMunkresMinimalWeightBipartitePerfectMatching implements WeightedMatchingAlgorithm { ///////////////////////////////////////////////////////////////////////////////////////////////// private final WeightedGraph graph; private final List firstPartition; private final List secondPartition; private final int [] matching; /** * @param G target weighted bipartite graph to find matching in * @param S first vertex partition of the target bipartite graph * @param T second vertex partition of the target bipartite graph */ public KuhnMunkresMinimalWeightBipartitePerfectMatching( final WeightedGraph G, List S, List T) { // Validate graph being complete bipartite with equally-sized partitions if (S.size() != T.size()) { throw new IllegalArgumentException( "Graph supplied isn't complete bipartite with equally sized partitions!"); } int partition = S.size(), edges = G.edgeSet().size(); if (edges != (partition * partition)) { throw new IllegalArgumentException( "Graph supplied isn't complete bipartite with equally sized partitions!"); } graph = G; firstPartition = S; secondPartition = T; matching = new KuhnMunkresMatrixImplementation(G, S, T).buildMatching(); } @Override public Set getMatching() { Set edges = new HashSet(); for (int i = 0; i < matching.length; ++i) { edges.add( graph.getEdge( firstPartition.get(i), secondPartition.get(matching[i]))); } return edges; } @Override public double getMatchingWeight() { double weight = 0.; for (E edge : getMatching()) { weight += graph.getEdgeWeight(edge); } return weight; } /** * ... */ protected static class KuhnMunkresMatrixImplementation { /** * Cost matrix */ private double [][] costMatrix; /** * Excess matrix */ private double [][] excessMatrix; /** * Rows coverage bit-mask */ boolean [] rowsCovered; /** * Columns coverage bit-mask */ boolean [] columnsCovered; /** * ``columnMatched[i]'' is the column # of the ZERO matched at the i-th * row */ private int [] columnMatched; /** * ``rowMatched[j]'' is the row # of the ZERO matched at the j-th column */ private int [] rowMatched; public KuhnMunkresMatrixImplementation( final WeightedGraph G, final List S, final List T) { int partition = S.size(); // Build an excess-matrix corresponding to the supplied weighted // complete bipartite graph costMatrix = new double[partition][]; for (int i = 0; i < S.size(); ++i) { V source = S.get(i); costMatrix[i] = new double[partition]; for (int j = 0; j < T.size(); ++j) { V target = T.get(j); if (source.equals(target)) { continue; } costMatrix[i][j] = G.getEdgeWeight(G.getEdge(source, target)); } } } /** * Gets costs-matrix as input and returns assignment of tasks * (designated by the columns of cost-matrix) to the workers (designated * by the rows of the cost-matrix) so that to MINIMIZE total * tasks-tackling costs */ protected int [] buildMatching() { int height = costMatrix.length, width = costMatrix[0].length; // Make an excess-matrix excessMatrix = makeExcessMatrix(); // Build row/column coverage rowsCovered = new boolean[height]; columnsCovered = new boolean[width]; // Cached values of zeroes' indices in particular columns/rows columnMatched = new int[height]; rowMatched = new int[width]; Arrays.fill(columnMatched, -1); Arrays.fill(rowMatched, -1); // Find perfect matching corresponding to the optimal assignment while (buildMaximalMatching() < width) { buildVertexCoverage(); extendEqualityGraph(); } // Almost done! return Arrays.copyOf(columnMatched, height); } ///////////////////////////////////////////////////////////////////////////////////////////////// /** * Composes excess-matrix corresponding to the given cost-matrix */ double [][] makeExcessMatrix() { double [][] excessMatrix = new double[costMatrix.length][]; for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i] = Arrays.copyOf(costMatrix[i], costMatrix[i].length); } // Subtract minimal costs across the rows for (int i = 0; i < excessMatrix.length; ++i) { double cheapestTaskCost = Double.MAX_VALUE; for (int j = 0; j < excessMatrix[i].length; ++j) { if (cheapestTaskCost > excessMatrix[i][j]) { cheapestTaskCost = excessMatrix[i][j]; } } for (int j = 0; j < excessMatrix[i].length; ++j) { excessMatrix[i][j] -= cheapestTaskCost; } } // Subtract minimal costs across the columns // // NOTE: Makes nothing if there is any worker that can more // (cost-)effectively tackle this task than any other, i.e. there // is any row having zero in this column. However, if there is no // one, reduce the cost-demands of each worker to the size of the // min-cost (we can easily do this, since we have particular // interest of the relative values only), i.e. subtract the value // of the minimum cost-demands to highlight (with zero) the // worker that can tackle this task demanding lowest reward. for (int j = 0; j < excessMatrix[0].length; ++j) { double cheapestWorkerCost = Double.MAX_VALUE; for (int i = 0; i < excessMatrix.length; ++i) { if (cheapestWorkerCost > excessMatrix[i][j]) { cheapestWorkerCost = excessMatrix[i][j]; } } for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i][j] -= cheapestWorkerCost; } } return excessMatrix; } /** * Builds maximal matching corresponding to the given excess-matrix * * @return size of a maximal matching built */ int buildMaximalMatching() { // Match all zeroes non-staying in the same column/row int matchingSizeLowerBound = 0; for (int i = 0; i < columnMatched.length; ++i) { if (columnMatched[i] != -1) { ++matchingSizeLowerBound; } } // Compose first-approximation by matching zeroes in a greed fashion for (int j = 0; j < excessMatrix[0].length; ++j) { if (rowMatched[j] == -1) { for (int i = 0; i < excessMatrix.length; ++i) { if ((excessMatrix[i][j] == 0) && (columnMatched[i] == -1)) { ++matchingSizeLowerBound; columnMatched[i] = j; rowMatched[j] = i; break; } } } } // Check whether perfect matching is found if (matchingSizeLowerBound == excessMatrix[0].length) { return matchingSizeLowerBound; } // //As to E. Burge: Matching is maximal iff bipartite graph doesn't //contain any matching-augmenting paths. // //Try to find any match-augmenting path boolean [] rowsVisited = new boolean[excessMatrix.length]; boolean [] colsVisited = new boolean[excessMatrix[0].length]; int matchingSize = 0; boolean extending = true; while (extending && (matchingSize < excessMatrix.length)) { Arrays.fill(rowsVisited, false); Arrays.fill(colsVisited, false); extending = false; for (int j = 0; j < excessMatrix.length; ++j) { if ((rowMatched[j] == -1) && !colsVisited[j]) { extending |= new MatchExtender(rowsVisited, colsVisited).extend( j); /* Try to extend matching */ } } matchingSize = 0; for (int j = 0; j < rowMatched.length; ++j) { if (rowMatched[j] != -1) { ++matchingSize; } } } return matchingSize; } /** * Builds vertex-cover given built up matching */ void buildVertexCoverage() { Arrays.fill(columnsCovered, false); Arrays.fill(rowsCovered, false); boolean [] invertible = new boolean[rowsCovered.length]; for (int i = 0; i < excessMatrix.length; ++i) { if (columnMatched[i] != -1) { invertible[i] = true; continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (Double.valueOf(excessMatrix[i][j]).compareTo(0.) == 0) { rowsCovered[i] = invertible[i] = true; break; } } } boolean cont = true; while (cont) { for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { for (int j = 0; j < excessMatrix[i].length; ++j) { if ((Double.valueOf(excessMatrix[i][j]).compareTo( 0.) == 0) && !columnsCovered[j]) { columnsCovered[j] = true; } } } } // Shall we continue? cont = false; for (int j = 0; j < columnsCovered.length; ++j) { if (columnsCovered[j] && (rowMatched[j] != -1)) { if (!rowsCovered[rowMatched[j]]) { cont = true; rowsCovered[rowMatched[j]] = true; } } } } // Invert covered rows selection for (int i = 0; i < rowsCovered.length; ++i) { if (invertible[i]) { rowsCovered[i] ^= true; } } assert uncovered(excessMatrix, rowsCovered, columnsCovered) == 0; assert minimal(rowMatched, rowsCovered, columnsCovered); } /** * Extends equality-graph subtracting minimal excess from all the * COLUMNS UNCOVERED and adding it to the all ROWS COVERED */ void extendEqualityGraph() { double minExcess = Double.MAX_VALUE; for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (columnsCovered[j]) { continue; } if (minExcess > excessMatrix[i][j]) { minExcess = excessMatrix[i][j]; } } } // Add up to all elements of the COVERED ROWS for (int i = 0; i < excessMatrix.length; ++i) { if (!rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { excessMatrix[i][j] += minExcess; } } // Subtract from all elements of the UNCOVERED COLUMNS for (int j = 0; j < excessMatrix[0].length; ++j) { if (columnsCovered[j]) { continue; } for (int i = 0; i < excessMatrix.length; ++i) { excessMatrix[i][j] -= minExcess; } } } /** * Assures given column-n-rows-coverage/zero-matching to be * minimal/maximal * * @param match zero-matching to check * @param rowsCovered rows coverage to check * @param colsCovered columns coverage to check * * @return true if given matching and coverage are maximal and minimal * respectively */ private static boolean minimal( final int [] match, final boolean [] rowsCovered, final boolean [] colsCovered) { int matched = 0; for (int i = 0; i < match.length; ++i) { if (match[i] != -1) { ++matched; } } int covered = 0; for (int i = 0; i < rowsCovered.length; ++i) { if (rowsCovered[i]) { ++covered; } if (colsCovered[i]) { ++covered; } } return matched == covered; } /** * Accounts for zeroes being uncovered * * @param excessMatrix target excess-matrix * @param rowsCovered rows coverage to check * @param colsCovered columns coverage to check */ private static int uncovered( final double [][] excessMatrix, final boolean [] rowsCovered, final boolean [] colsCovered) { int uncoveredZero = 0; for (int i = 0; i < excessMatrix.length; ++i) { if (rowsCovered[i]) { continue; } for (int j = 0; j < excessMatrix[i].length; ++j) { if (colsCovered[j]) { continue; } if (Double.valueOf(excessMatrix[i][j]).compareTo(0.) == 0) { ++uncoveredZero; } } } return uncoveredZero; } /** * Aggregates utilities to extend matching */ protected class MatchExtender { private final boolean [] rowsVisited; private final boolean [] colsVisited; private MatchExtender( final boolean [] rowsVisited, final boolean [] colsVisited) { this.rowsVisited = rowsVisited; this.colsVisited = colsVisited; } /** * Performs DFS to seek after matching-augmenting path starting at * the initial-vertex * * @return true when some augmenting-path found, false otherwise */ public boolean extend(int initialCol) { return extendMatchingEL(initialCol); } /** * DFS helper #1 (applicable for ODD-LENGTH paths ONLY) * * @param pathTailRow row # of tail of the matching-augmenting path * @param pathTailCol column # of tail of the matching-augmenting * path * * @return true if matching-augmenting path found, false otherwise */ private boolean extendMatchingOL(int pathTailRow, int pathTailCol) { // Seek after already matched zero // Check whether row occupied by the 'tail' vertex isn't matched if (columnMatched[pathTailRow] == -1) { // There is no way to continue: mark zero as matched, // trigger along-side flipping columnMatched[pathTailRow] = pathTailCol; rowMatched[pathTailCol] = pathTailRow; return true; } else { // Add next matched zero: mark current vertex as "visited" rowsVisited[pathTailRow] = true; // Check whether we can proceed if (colsVisited[columnMatched[pathTailRow]]) { return false; } boolean extending = extendMatchingEL( columnMatched[pathTailRow]); if (extending) { columnMatched[pathTailRow] = pathTailCol; rowMatched[pathTailCol] = pathTailRow; } return extending; } } /** * DFS helper #1 (applicable for ODD-LENGTH paths ONLY) * * @param pathTailCol column # of tail of the matching-augmenting * path * * @return true if matching-augmenting path found, false otherwise */ private boolean extendMatchingEL(int pathTailCol) { colsVisited[pathTailCol] = true; for (int i = 0; i < excessMatrix.length; ++i) { if ((excessMatrix[i][pathTailCol] == 0) && !rowsVisited[i]) { boolean extending = extendMatchingOL( i, // New tail to continue pathTailCol // ); if (extending) { return true; } } } return false; } } } } // End KuhnMunkresMinimalWeightBipartitePerfectMatching.java




© 2015 - 2024 Weber Informatics LLC | Privacy Policy