All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.cycle.SzwarcfiterLauerSimpleCycles Maven / Gradle / Ivy

/* ==========================================
 * JGraphT : a free Java graph-theory library
 * ==========================================
 *
 * Project Info:  http://jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (http://sourceforge.net/users/barak_naveh)
 *
 * (C) Copyright 2003-2008, by Barak Naveh and Contributors.
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
/* -------------------------
 * SzwarcfiterLauerSimpleCycles.java
 * -------------------------
 * (C) Copyright 2013, by Nikolay Ognyanov
 *
 * Original Author: Nikolay Ognyanov
 * Contributor(s) :
 *
 * $Id$
 *
 * Changes
 * -------
 * 06-Sep-2013 : Initial revision (NO);
 */
package org.jgrapht.alg.cycle;

import java.util.*;

import org.jgrapht.*;
import org.jgrapht.alg.*;


/**
 * Find all simple cycles of a directed graph using the Schwarcfiter and Lauer's
 * algorithm.
 *
 * 

See:
* J.L.Szwarcfiter and P.E.Lauer, Finding the elementary cycles of a directed * graph in O(n + m) per cycle, Technical Report Series, #60, May 1974, Univ. of * Newcastle upon Tyne, Newcastle upon Tyne, England. * * @param the vertex type. * @param the edge type. * * @author Nikolay Ognyanov */ public class SzwarcfiterLauerSimpleCycles implements DirectedSimpleCycles { // The graph. private DirectedGraph graph; // The state of the algorithm. private List> cycles = null; private V [] iToV = null; private Map vToI = null; private Map> bSets = null; private ArrayDeque stack = null; private Set marked = null; private Map> removed = null; private int [] position = null; private boolean [] reach = null; private List startVertices = null; /** * Create a simple cycle finder with an unspecified graph. */ public SzwarcfiterLauerSimpleCycles() { } /** * Create a simple cycle finder for the specified graph. * * @param graph - the DirectedGraph in which to find cycles. * * @throws IllegalArgumentException if the graph argument is * null. */ public SzwarcfiterLauerSimpleCycles(DirectedGraph graph) { if (graph == null) { throw new IllegalArgumentException("Null graph argument."); } this.graph = graph; } /** * {@inheritDoc} */ @Override public DirectedGraph getGraph() { return graph; } /** * {@inheritDoc} */ @Override public void setGraph(DirectedGraph graph) { if (graph == null) { throw new IllegalArgumentException("Null graph argument."); } this.graph = graph; } /** * {@inheritDoc} */ @Override public List> findSimpleCycles() { // Just a straightforward implementation of // the algorithm. if (graph == null) { throw new IllegalArgumentException("Null graph."); } initState(); StrongConnectivityInspector inspector = new StrongConnectivityInspector(graph); List> sccs = inspector.stronglyConnectedSets(); for (Set scc : sccs) { int maxInDegree = -1; V startVertex = null; for (V v : scc) { int inDegree = graph.inDegreeOf(v); if (inDegree > maxInDegree) { maxInDegree = inDegree; startVertex = v; } } startVertices.add(startVertex); } for (V vertex : startVertices) { cycle(toI(vertex), 0); } List> result = cycles; clearState(); return result; } private boolean cycle(int v, int q) { boolean foundCycle = false; V vV = toV(v); marked.add(vV); stack.push(vV); int t = stack.size(); position[v] = t; if (!reach[v]) { q = t; } Set avRemoved = getRemoved(vV); Set edgeSet = graph.outgoingEdgesOf(vV); Iterator avIt = edgeSet.iterator(); while (avIt.hasNext()) { E e = avIt.next(); V wV = graph.getEdgeTarget(e); if (avRemoved.contains(wV)) { continue; } int w = toI(wV); if (!marked.contains(wV)) { boolean gotCycle = cycle(w, q); if (gotCycle) { foundCycle = gotCycle; } else { noCycle(v, w); } } else if (position[w] <= q) { foundCycle = true; List cycle = new ArrayList(); Iterator it = stack.descendingIterator(); V current = null; while (it.hasNext()) { current = it.next(); if (wV.equals(current)) { break; } } cycle.add(wV); while (it.hasNext()) { current = it.next(); cycle.add(current); if (current.equals(vV)) { break; } } cycles.add(cycle); } else { noCycle(v, w); } } stack.pop(); if (foundCycle) { unmark(v); } reach[v] = true; position[v] = graph.vertexSet().size(); return foundCycle; } private void noCycle(int x, int y) { V xV = toV(x); V yV = toV(y); Set by = getBSet(yV); Set axRemoved = getRemoved(xV); by.add(xV); axRemoved.add(yV); } private void unmark(int x) { V xV = toV(x); marked.remove(xV); Set bx = getBSet(xV); for (V yV : bx) { Set ayRemoved = getRemoved(yV); ayRemoved.remove(xV); if (marked.contains(yV)) { unmark(toI(yV)); } } bx.clear(); } @SuppressWarnings("unchecked") private void initState() { cycles = new ArrayList>(); iToV = (V []) graph.vertexSet().toArray(); vToI = new HashMap(); bSets = new HashMap>(); stack = new ArrayDeque(); marked = new HashSet(); removed = new HashMap>(); int size = graph.vertexSet().size(); position = new int[size]; reach = new boolean[size]; startVertices = new ArrayList(); for (int i = 0; i < iToV.length; i++) { vToI.put(iToV[i], i); } } private void clearState() { cycles = null; iToV = null; vToI = null; bSets = null; stack = null; marked = null; removed = null; position = null; reach = null; startVertices = null; } private Integer toI(V v) { return vToI.get(v); } private V toV(int i) { return iToV[i]; } private Set getBSet(V v) { // B sets are typically not all // needed, so instantiate lazily. Set result = bSets.get(v); if (result == null) { result = new HashSet(); bSets.put(v, result); } return result; } private Set getRemoved(V v) { // Removed sets typically not all // needed, so instantiate lazily. Set result = removed.get(v); if (result == null) { result = new HashSet(); removed.put(v, result); } return result; } } // End SzwarcfiterLauerSimpleCycles.java





© 2015 - 2024 Weber Informatics LLC | Privacy Policy