All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.cycle.TiernanSimpleCycles Maven / Gradle / Ivy

/* ==========================================
 * JGraphT : a free Java graph-theory library
 * ==========================================
 *
 * Project Info:  http://jgrapht.sourceforge.net/
 * Project Creator:  Barak Naveh (http://sourceforge.net/users/barak_naveh)
 *
 * (C) Copyright 2003-2008, by Barak Naveh and Contributors.
 *
 * This program and the accompanying materials are dual-licensed under
 * either
 *
 * (a) the terms of the GNU Lesser General Public License version 2.1
 * as published by the Free Software Foundation, or (at your option) any
 * later version.
 *
 * or (per the licensee's choosing)
 *
 * (b) the terms of the Eclipse Public License v1.0 as published by
 * the Eclipse Foundation.
 */
/* -------------------------
 * TiernanSimpleCycles.java
 * -------------------------
 * (C) Copyright 2013, by Nikolay Ognyanov
 *
 * Original Author: Nikolay Ognyanov
 * Contributor(s) :
 *
 * $Id$
 *
 * Changes
 * -------
 * 06-Sep-2013 : Initial revision (NO);
 */
package org.jgrapht.alg.cycle;

import java.util.*;

import org.jgrapht.*;


/**
 * Find all simple cycles of a directed graph using the Tiernan's algorithm.
 *
 * 

See:
* J.C.Tiernan An Efficient Search Algorithm Find the Elementary Circuits of a * Graph., Communications of the ACM, vol.13, 12, (1970), pp. 722 - 726. * * @param the vertex type. * @param the edge type. * * @author Nikolay Ognyanov */ public class TiernanSimpleCycles implements DirectedSimpleCycles { private DirectedGraph graph; /** * Create a simple cycle finder with an unspecified graph. */ public TiernanSimpleCycles() { } /** * Create a simple cycle finder for the specified graph. * * @param graph - the DirectedGraph in which to find cycles. * * @throws IllegalArgumentException if the graph argument is * null. */ public TiernanSimpleCycles(DirectedGraph graph) { if (graph == null) { throw new IllegalArgumentException("Null graph argument."); } this.graph = graph; } /** * {@inheritDoc} */ @Override public DirectedGraph getGraph() { return graph; } /** * {@inheritDoc} */ @Override public void setGraph(DirectedGraph graph) { if (graph == null) { throw new IllegalArgumentException("Null graph argument."); } this.graph = graph; } /** * {@inheritDoc} */ @Override public List> findSimpleCycles() { if (graph == null) { throw new IllegalArgumentException("Null graph."); } Map indices = new HashMap(); List path = new ArrayList(); Set pathSet = new HashSet(); Map> blocked = new HashMap>(); List> cycles = new LinkedList>(); int index = 0; for (V v : graph.vertexSet()) { blocked.put(v, new HashSet()); indices.put(v, index++); } Iterator vertexIterator = graph.vertexSet().iterator(); if (!vertexIterator.hasNext()) { return cycles; } V startOfPath = null; V endOfPath = null; V temp = null; int endIndex = 0; boolean extensionFound = false; endOfPath = vertexIterator.next(); path.add(endOfPath); pathSet.add(endOfPath); // A mostly straightforward implementation // of the algorithm. Except that there is // no real need for the state machine from // the original paper. while (true) { // path extension do { extensionFound = false; for (E e : graph.outgoingEdgesOf(endOfPath)) { V n = graph.getEdgeTarget(e); int cmp = indices.get(n).compareTo(indices.get(path.get(0))); if ((cmp > 0) && !pathSet.contains(n) && !blocked.get(endOfPath).contains(n)) { path.add(n); pathSet.add(n); endOfPath = n; extensionFound = true; break; } } } while (extensionFound); // circuit confirmation startOfPath = path.get(0); if (graph.containsEdge(endOfPath, startOfPath)) { List cycle = new ArrayList(); cycle.addAll(path); cycles.add(cycle); } // vertex closure if (path.size() > 1) { blocked.get(endOfPath).clear(); endIndex = path.size() - 1; path.remove(endIndex); pathSet.remove(endOfPath); --endIndex; temp = endOfPath; endOfPath = path.get(endIndex); blocked.get(endOfPath).add(temp); continue; } // advance initial index if (vertexIterator.hasNext()) { path.clear(); pathSet.clear(); endOfPath = vertexIterator.next(); path.add(endOfPath); pathSet.add(endOfPath); for (V vt : blocked.keySet()) { blocked.get(vt).clear(); } continue; } // terminate break; } return cycles; } } // End TiernanSimpleCycles.java





© 2015 - 2024 Weber Informatics LLC | Privacy Policy