org.bouncycastle.math.Primes Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of com.liferay.saml.opensaml.integration Show documentation
Show all versions of com.liferay.saml.opensaml.integration Show documentation
Liferay SAML OpenSAML Integration
package org.bouncycastle.math;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;
/**
* Utility methods for generating primes and testing for primality.
*/
public abstract class Primes
{
public static final int SMALL_FACTOR_LIMIT = 211;
private static final BigInteger ONE = BigInteger.valueOf(1);
private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger THREE = BigInteger.valueOf(3);
/**
* Used to return the output from the
* {@linkplain Primes#enhancedMRProbablePrimeTest(BigInteger, SecureRandom, int) Enhanced
* Miller-Rabin Probabilistic Primality Test}
*/
public static class MROutput
{
private static MROutput probablyPrime()
{
return new MROutput(false, null);
}
private static MROutput provablyCompositeWithFactor(BigInteger factor)
{
return new MROutput(true, factor);
}
private static MROutput provablyCompositeNotPrimePower()
{
return new MROutput(true, null);
}
private boolean provablyComposite;
private BigInteger factor;
private MROutput(boolean provablyComposite, BigInteger factor)
{
this.provablyComposite = provablyComposite;
this.factor = factor;
}
public BigInteger getFactor()
{
return factor;
}
public boolean isProvablyComposite()
{
return provablyComposite;
}
public boolean isNotPrimePower()
{
return provablyComposite && factor == null;
}
}
/**
* Used to return the output from the
* {@linkplain Primes#generateSTRandomPrime(Digest, int, byte[]) Shawe-Taylor Random_Prime
* Routine}
*/
public static class STOutput
{
private BigInteger prime;
private byte[] primeSeed;
private int primeGenCounter;
private STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
{
this.prime = prime;
this.primeSeed = primeSeed;
this.primeGenCounter = primeGenCounter;
}
public BigInteger getPrime()
{
return prime;
}
public byte[] getPrimeSeed()
{
return primeSeed;
}
public int getPrimeGenCounter()
{
return primeGenCounter;
}
}
/**
* FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
*
* Construct a provable prime number using a hash function.
*
* @param hash
* the {@link Digest} instance to use (as "Hash()"). Cannot be null.
* @param length
* the length (in bits) of the prime to be generated. Must be at least 2.
* @param inputSeed
* the seed to be used for the generation of the requested prime. Cannot be null or
* empty.
* @return an {@link STOutput} instance containing the requested prime.
*/
public static STOutput generateSTRandomPrime(Digest hash, int length, byte[] inputSeed)
{
if (hash == null)
{
throw new IllegalArgumentException("'hash' cannot be null");
}
if (length < 2)
{
throw new IllegalArgumentException("'length' must be >= 2");
}
if (inputSeed == null || inputSeed.length == 0)
{
throw new IllegalArgumentException("'inputSeed' cannot be null or empty");
}
return implSTRandomPrime(hash, length, Arrays.clone(inputSeed));
}
/**
* FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
*
* Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
* alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
* information about a composite candidate, which may be useful when generating or validating
* RSA moduli.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param random
* the source of randomness to use to choose bases.
* @param iterations
* the number of randomly-chosen bases to perform the test for.
* @return an {@link MROutput} instance that can be further queried for details.
*/
public static MROutput enhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
{
checkCandidate(candidate, "candidate");
if (random == null)
{
throw new IllegalArgumentException("'random' cannot be null");
}
if (iterations < 1)
{
throw new IllegalArgumentException("'iterations' must be > 0");
}
if (candidate.bitLength() == 2)
{
return MROutput.probablyPrime();
}
if (!candidate.testBit(0))
{
return MROutput.provablyCompositeWithFactor(TWO);
}
BigInteger w = candidate;
BigInteger wSubOne = candidate.subtract(ONE);
BigInteger wSubTwo = candidate.subtract(TWO);
int a = wSubOne.getLowestSetBit();
BigInteger m = wSubOne.shiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.createRandomInRange(TWO, wSubTwo, random);
BigInteger g = b.gcd(w);
if (g.compareTo(ONE) > 0)
{
return MROutput.provablyCompositeWithFactor(g);
}
BigInteger z = b.modPow(m, w);
if (z.equals(ONE) || z.equals(wSubOne))
{
continue;
}
boolean primeToBase = false;
BigInteger x = z;
for (int j = 1; j < a; ++j)
{
z = z.modPow(TWO, w);
if (z.equals(wSubOne))
{
primeToBase = true;
break;
}
if (z.equals(ONE))
{
break;
}
x = z;
}
if (!primeToBase)
{
if (!z.equals(ONE))
{
x = z;
z = z.modPow(TWO, w);
if (!z.equals(ONE))
{
x = z;
}
}
g = x.subtract(ONE).gcd(w);
if (g.compareTo(ONE) > 0)
{
return MROutput.provablyCompositeWithFactor(g);
}
return MROutput.provablyCompositeNotPrimePower();
}
}
return MROutput.probablyPrime();
}
/**
* A fast check for small divisors, up to some implementation-specific limit.
*
* @param candidate
* the {@link BigInteger} instance to test for division by small factors.
*
* @return true
if the candidate is found to have any small factors,
* false
otherwise.
*/
public static boolean hasAnySmallFactors(BigInteger candidate)
{
checkCandidate(candidate, "candidate");
return implHasAnySmallFactors(candidate);
}
/**
* FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
*
* Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param random
* the source of randomness to use to choose bases.
* @param iterations
* the number of randomly-chosen bases to perform the test for.
* @return false
if any witness to compositeness is found amongst the chosen bases
* (so candidate
is definitely NOT prime), or else true
* (indicating primality with some probability dependent on the number of iterations
* that were performed).
*/
public static boolean isMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
{
checkCandidate(candidate, "candidate");
if (random == null)
{
throw new IllegalArgumentException("'random' cannot be null");
}
if (iterations < 1)
{
throw new IllegalArgumentException("'iterations' must be > 0");
}
if (candidate.bitLength() == 2)
{
return true;
}
if (!candidate.testBit(0))
{
return false;
}
BigInteger w = candidate;
BigInteger wSubOne = candidate.subtract(ONE);
BigInteger wSubTwo = candidate.subtract(TWO);
int a = wSubOne.getLowestSetBit();
BigInteger m = wSubOne.shiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.createRandomInRange(TWO, wSubTwo, random);
if (!implMRProbablePrimeToBase(w, wSubOne, m, a, b))
{
return false;
}
}
return true;
}
/**
* FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
*
* Run a single iteration of the Miller-Rabin algorithm against the specified base.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param base
* the base value to use for this iteration.
* @return false
if the specified base is a witness to compositeness (so
* candidate
is definitely NOT prime), or else true
.
*/
public static boolean isMRProbablePrimeToBase(BigInteger candidate, BigInteger base)
{
checkCandidate(candidate, "candidate");
checkCandidate(base, "base");
if (base.compareTo(candidate.subtract(ONE)) >= 0)
{
throw new IllegalArgumentException("'base' must be < ('candidate' - 1)");
}
if (candidate.bitLength() == 2)
{
return true;
}
BigInteger w = candidate;
BigInteger wSubOne = candidate.subtract(ONE);
int a = wSubOne.getLowestSetBit();
BigInteger m = wSubOne.shiftRight(a);
return implMRProbablePrimeToBase(w, wSubOne, m, a, base);
}
private static void checkCandidate(BigInteger n, String name)
{
if (n == null || n.signum() < 1 || n.bitLength() < 2)
{
throw new IllegalArgumentException("'" + name + "' must be non-null and >= 2");
}
}
private static boolean implHasAnySmallFactors(BigInteger x)
{
/*
* Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
*/
int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
int r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
|| (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
{
return true;
}
m = 29 * 31 * 37 * 41 * 43;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
{
return true;
}
m = 47 * 53 * 59 * 61 * 67;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
{
return true;
}
m = 71 * 73 * 79 * 83;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
{
return true;
}
m = 89 * 97 * 101 * 103;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
{
return true;
}
m = 107 * 109 * 113 * 127;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
{
return true;
}
m = 131 * 137 * 139 * 149;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
{
return true;
}
m = 151 * 157 * 163 * 167;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
{
return true;
}
m = 173 * 179 * 181 * 191;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
{
return true;
}
m = 193 * 197 * 199 * 211;
r = x.mod(BigInteger.valueOf(m)).intValue();
if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
{
return true;
}
/*
* NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
* highest small factor tested here.
*/
return false;
}
private static boolean implMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
{
BigInteger z = b.modPow(m, w);
if (z.equals(ONE) || z.equals(wSubOne))
{
return true;
}
boolean result = false;
for (int j = 1; j < a; ++j)
{
z = z.modPow(TWO, w);
if (z.equals(wSubOne))
{
result = true;
break;
}
if (z.equals(ONE))
{
return false;
}
}
return result;
}
private static STOutput implSTRandomPrime(Digest d, int length, byte[] primeSeed)
{
int dLen = d.getDigestSize();
if (length < 33)
{
int primeGenCounter = 0;
byte[] c0 = new byte[dLen];
byte[] c1 = new byte[dLen];
for (;;)
{
hash(d, primeSeed, c0, 0);
inc(primeSeed, 1);
hash(d, primeSeed, c1, 0);
inc(primeSeed, 1);
int c = extract32(c0) ^ extract32(c1);
c &= (-1 >>> (32 - length));
c |= (1 << (length - 1)) | 1;
++primeGenCounter;
long c64 = c & 0xFFFFFFFFL;
if (isPrime32(c64))
{
return new STOutput(BigInteger.valueOf(c64), primeSeed, primeGenCounter);
}
if (primeGenCounter > (4 * length))
{
throw new IllegalStateException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
}
}
STOutput rec = implSTRandomPrime(d, (length + 3) / 2, primeSeed);
BigInteger c0 = rec.getPrime();
primeSeed = rec.getPrimeSeed();
int primeGenCounter = rec.getPrimeGenCounter();
int outlen = 8 * dLen;
int iterations = (length - 1) / outlen;
int oldCounter = primeGenCounter;
BigInteger x = hashGen(d, primeSeed, iterations + 1);
x = x.mod(ONE.shiftLeft(length - 1)).setBit(length - 1);
BigInteger c0x2 = c0.shiftLeft(1);
BigInteger tx2 = x.subtract(ONE).divide(c0x2).add(ONE).shiftLeft(1);
int dt = 0;
BigInteger c = tx2.multiply(c0).add(ONE);
/*
* TODO Since the candidate primes are generated by constant steps ('c0x2'), sieving could
* be used here in place of the 'hasAnySmallFactors' approach.
*/
for (;;)
{
if (c.bitLength() > length)
{
tx2 = ONE.shiftLeft(length - 1).subtract(ONE).divide(c0x2).add(ONE).shiftLeft(1);
c = tx2.multiply(c0).add(ONE);
}
++primeGenCounter;
/*
* This is an optimization of the original algorithm, using trial division to screen out
* many non-primes quickly.
*
* NOTE: 'primeSeed' is still incremented as if we performed the full check!
*/
if (!implHasAnySmallFactors(c))
{
BigInteger a = hashGen(d, primeSeed, iterations + 1);
a = a.mod(c.subtract(THREE)).add(TWO);
tx2 = tx2.add(BigInteger.valueOf(dt));
dt = 0;
BigInteger z = a.modPow(tx2, c);
if (c.gcd(z.subtract(ONE)).equals(ONE) && z.modPow(c0, c).equals(ONE))
{
return new STOutput(c, primeSeed, primeGenCounter);
}
}
else
{
inc(primeSeed, iterations + 1);
}
if (primeGenCounter >= ((4 * length) + oldCounter))
{
throw new IllegalStateException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
dt += 2;
c = c.add(c0x2);
}
}
private static int extract32(byte[] bs)
{
int result = 0;
int count = Math.min(4, bs.length);
for (int i = 0; i < count; ++i)
{
int b = bs[bs.length - (i + 1)] & 0xFF;
result |= (b << (8 * i));
}
return result;
}
private static void hash(Digest d, byte[] input, byte[] output, int outPos)
{
d.update(input, 0, input.length);
d.doFinal(output, outPos);
}
private static BigInteger hashGen(Digest d, byte[] seed, int count)
{
int dLen = d.getDigestSize();
int pos = count * dLen;
byte[] buf = new byte[pos];
for (int i = 0; i < count; ++i)
{
pos -= dLen;
hash(d, seed, buf, pos);
inc(seed, 1);
}
return new BigInteger(1, buf);
}
private static void inc(byte[] seed, int c)
{
int pos = seed.length;
while (c > 0 && --pos >= 0)
{
c += (seed[pos] & 0xFF);
seed[pos] = (byte)c;
c >>>= 8;
}
}
private static boolean isPrime32(long x)
{
if (x >>> 32 != 0L)
{
throw new IllegalArgumentException("Size limit exceeded");
}
/*
* Use wheel factorization with 2, 3, 5 to select trial divisors.
*/
if (x <= 5L)
{
return x == 2L || x == 3L || x == 5L;
}
if ((x & 1L) == 0L || (x % 3L) == 0L || (x % 5L) == 0L)
{
return false;
}
long[] ds = new long[]{ 1L, 7L, 11L, 13L, 17L, 19L, 23L, 29L };
long base = 0L;
for (int pos = 1;; pos = 0)
{
/*
* Trial division by wheel-selected divisors
*/
while (pos < ds.length)
{
long d = base + ds[pos];
if (x % d == 0L)
{
return x < 30L;
}
++pos;
}
base += 30L;
if (base * base >= x)
{
return true;
}
}
}
}