org.bouncycastle.math.ec.WTauNafMultiplier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of com.liferay.saml.opensaml.integration Show documentation
Show all versions of com.liferay.saml.opensaml.integration Show documentation
Liferay SAML OpenSAML Integration
package org.bouncycastle.math.ec;
import java.math.BigInteger;
/**
* Class implementing the WTNAF (Window
* τ
-adic Non-Adjacent Form) algorithm.
*/
public class WTauNafMultiplier extends AbstractECMultiplier
{
// TODO Create WTauNafUtil class and move various functionality into it
static final String PRECOMP_NAME = "bc_wtnaf";
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by k
using the reduced τ
-adic NAF (RTNAF)
* method.
* @param point The ECPoint.AbstractF2m to multiply.
* @param k The integer by which to multiply k
.
* @return p
multiplied by k
.
*/
protected ECPoint multiplyPositive(ECPoint point, BigInteger k)
{
if (!(point instanceof ECPoint.AbstractF2m))
{
throw new IllegalArgumentException("Only ECPoint.AbstractF2m can be " +
"used in WTauNafMultiplier");
}
ECPoint.AbstractF2m p = (ECPoint.AbstractF2m)point;
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
byte a = curve.getA().toBigInteger().byteValue();
byte mu = Tnaf.getMu(a);
ZTauElement rho = Tnaf.partModReduction(curve, k, a, mu, (byte)10);
return multiplyWTnaf(p, rho, a, mu);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ
of Z[τ]
using
* the τ
-adic NAF (TNAF) method.
* @param p The ECPoint.AbstractF2m to multiply.
* @param lambda The element λ
of
* Z[τ]
of which to compute the
* [τ]
-adic NAF.
* @return p
multiplied by λ
.
*/
private ECPoint.AbstractF2m multiplyWTnaf(ECPoint.AbstractF2m p, ZTauElement lambda, byte a, byte mu)
{
ZTauElement[] alpha = (a == 0) ? Tnaf.alpha0 : Tnaf.alpha1;
BigInteger tw = Tnaf.getTw(mu, Tnaf.WIDTH);
byte[] u = Tnaf.tauAdicWNaf(mu, lambda, Tnaf.WIDTH, tw.intValue(), alpha);
return multiplyFromWTnaf(p, u);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.ECPoint.AbstractF2m ECPoint.AbstractF2m}
* by an element λ
of Z[τ]
* using the window τ
-adic NAF (TNAF) method, given the
* WTNAF of λ
.
* @param p The ECPoint.AbstractF2m to multiply.
* @param u The the WTNAF of λ
..
* @return λ * p
*/
private static ECPoint.AbstractF2m multiplyFromWTnaf(final ECPoint.AbstractF2m p, byte[] u)
{
ECCurve.AbstractF2m curve = (ECCurve.AbstractF2m)p.getCurve();
final byte a = curve.getA().toBigInteger().byteValue();
WTauNafPreCompInfo preCompInfo = (WTauNafPreCompInfo)curve.precompute(p, PRECOMP_NAME, new PreCompCallback()
{
public PreCompInfo precompute(PreCompInfo existing)
{
if (existing instanceof WTauNafPreCompInfo)
{
return existing;
}
WTauNafPreCompInfo result = new WTauNafPreCompInfo();
result.setPreComp(Tnaf.getPreComp(p, a));
return result;
}
});
ECPoint.AbstractF2m[] pu = preCompInfo.getPreComp();
// TODO Include negations in precomp (optionally) and use from here
ECPoint.AbstractF2m[] puNeg = new ECPoint.AbstractF2m[pu.length];
for (int i = 0; i < pu.length; ++i)
{
puNeg[i] = (ECPoint.AbstractF2m)pu[i].negate();
}
// q = infinity
ECPoint.AbstractF2m q = (ECPoint.AbstractF2m) p.getCurve().getInfinity();
int tauCount = 0;
for (int i = u.length - 1; i >= 0; i--)
{
++tauCount;
int ui = u[i];
if (ui != 0)
{
q = q.tauPow(tauCount);
tauCount = 0;
ECPoint x = ui > 0 ? pu[ui >>> 1] : puNeg[(-ui) >>> 1];
q = (ECPoint.AbstractF2m)q.add(x);
}
}
if (tauCount > 0)
{
q = q.tauPow(tauCount);
}
return q;
}
}