org.bouncycastle.cert.selector.MSOutlookKeyIdCalculator Maven / Gradle / Ivy
The newest version!
package org.bouncycastle.cert.selector;
import java.io.IOException;
import org.bouncycastle.asn1.ASN1Encoding;
import org.bouncycastle.asn1.x509.SubjectPublicKeyInfo;
import org.bouncycastle.util.Pack;
class MSOutlookKeyIdCalculator
{
// This is less than ideal, but it seems to be the best way of supporting this without exposing SHA-1
// as the class is only used to workout the MSOutlook Key ID, you can think of the fact it's SHA-1 as
// a coincidence...
static byte[] calculateKeyId(SubjectPublicKeyInfo info)
{
SHA1Digest dig = new SHA1Digest();
byte[] hash = new byte[dig.getDigestSize()];
byte[] spkiEnc = new byte[0];
try
{
spkiEnc = info.getEncoded(ASN1Encoding.DER);
}
catch (IOException e)
{
return new byte[0];
}
// try the outlook 2010 calculation
dig.update(spkiEnc, 0, spkiEnc.length);
dig.doFinal(hash, 0);
return hash;
}
private static abstract class GeneralDigest
{
private static final int BYTE_LENGTH = 64;
private byte[] xBuf;
private int xBufOff;
private long byteCount;
/**
* Standard constructor
*/
protected GeneralDigest()
{
xBuf = new byte[4];
xBufOff = 0;
}
/**
* Copy constructor. We are using copy constructors in place
* of the Object.clone() interface as this interface is not
* supported by J2ME.
*/
protected GeneralDigest(GeneralDigest t)
{
xBuf = new byte[t.xBuf.length];
copyIn(t);
}
protected void copyIn(GeneralDigest t)
{
System.arraycopy(t.xBuf, 0, xBuf, 0, t.xBuf.length);
xBufOff = t.xBufOff;
byteCount = t.byteCount;
}
public void update(
byte in)
{
xBuf[xBufOff++] = in;
if (xBufOff == xBuf.length)
{
processWord(xBuf, 0);
xBufOff = 0;
}
byteCount++;
}
public void update(
byte[] in,
int inOff,
int len)
{
//
// fill the current word
//
while ((xBufOff != 0) && (len > 0))
{
update(in[inOff]);
inOff++;
len--;
}
//
// process whole words.
//
while (len > xBuf.length)
{
processWord(in, inOff);
inOff += xBuf.length;
len -= xBuf.length;
byteCount += xBuf.length;
}
//
// load in the remainder.
//
while (len > 0)
{
update(in[inOff]);
inOff++;
len--;
}
}
public void finish()
{
long bitLength = (byteCount << 3);
//
// add the pad bytes.
//
update((byte)128);
while (xBufOff != 0)
{
update((byte)0);
}
processLength(bitLength);
processBlock();
}
public void reset()
{
byteCount = 0;
xBufOff = 0;
for (int i = 0; i < xBuf.length; i++)
{
xBuf[i] = 0;
}
}
protected abstract void processWord(byte[] in, int inOff);
protected abstract void processLength(long bitLength);
protected abstract void processBlock();
}
private static class SHA1Digest
extends GeneralDigest
{
private static final int DIGEST_LENGTH = 20;
private int H1, H2, H3, H4, H5;
private int[] X = new int[80];
private int xOff;
/**
* Standard constructor
*/
public SHA1Digest()
{
reset();
}
public String getAlgorithmName()
{
return "SHA-1";
}
public int getDigestSize()
{
return DIGEST_LENGTH;
}
protected void processWord(
byte[] in,
int inOff)
{
// Note: Inlined for performance
// X[xOff] = Pack.bigEndianToInt(in, inOff);
int n = in[ inOff] << 24;
n |= (in[++inOff] & 0xff) << 16;
n |= (in[++inOff] & 0xff) << 8;
n |= (in[++inOff] & 0xff);
X[xOff] = n;
if (++xOff == 16)
{
processBlock();
}
}
protected void processLength(
long bitLength)
{
if (xOff > 14)
{
processBlock();
}
X[14] = (int)(bitLength >>> 32);
X[15] = (int)(bitLength & 0xffffffff);
}
public int doFinal(
byte[] out,
int outOff)
{
finish();
Pack.intToBigEndian(H1, out, outOff);
Pack.intToBigEndian(H2, out, outOff + 4);
Pack.intToBigEndian(H3, out, outOff + 8);
Pack.intToBigEndian(H4, out, outOff + 12);
Pack.intToBigEndian(H5, out, outOff + 16);
reset();
return DIGEST_LENGTH;
}
/**
* reset the chaining variables
*/
public void reset()
{
super.reset();
H1 = 0x67452301;
H2 = 0xefcdab89;
H3 = 0x98badcfe;
H4 = 0x10325476;
H5 = 0xc3d2e1f0;
xOff = 0;
for (int i = 0; i != X.length; i++)
{
X[i] = 0;
}
}
//
// Additive constants
//
private static final int Y1 = 0x5a827999;
private static final int Y2 = 0x6ed9eba1;
private static final int Y3 = 0x8f1bbcdc;
private static final int Y4 = 0xca62c1d6;
private int f(
int u,
int v,
int w)
{
return ((u & v) | ((~u) & w));
}
private int h(
int u,
int v,
int w)
{
return (u ^ v ^ w);
}
private int g(
int u,
int v,
int w)
{
return ((u & v) | (u & w) | (v & w));
}
protected void processBlock()
{
//
// expand 16 word block into 80 word block.
//
for (int i = 16; i < 80; i++)
{
int t = X[i - 3] ^ X[i - 8] ^ X[i - 14] ^ X[i - 16];
X[i] = t << 1 | t >>> 31;
}
//
// set up working variables.
//
int A = H1;
int B = H2;
int C = H3;
int D = H4;
int E = H5;
//
// round 1
//
int idx = 0;
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + f(B, C, D) + E + X[idx++] + Y1
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + f(B, C, D) + X[idx++] + Y1;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + f(A, B, C) + X[idx++] + Y1;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + f(E, A, B) + X[idx++] + Y1;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + f(D, E, A) + X[idx++] + Y1;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + f(C, D, E) + X[idx++] + Y1;
C = C << 30 | C >>> 2;
}
//
// round 2
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y2
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y2;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y2;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y2;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y2;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y2;
C = C << 30 | C >>> 2;
}
//
// round 3
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + g(B, C, D) + E + X[idx++] + Y3
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + g(B, C, D) + X[idx++] + Y3;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + g(A, B, C) + X[idx++] + Y3;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + g(E, A, B) + X[idx++] + Y3;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + g(D, E, A) + X[idx++] + Y3;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + g(C, D, E) + X[idx++] + Y3;
C = C << 30 | C >>> 2;
}
//
// round 4
//
for (int j = 0; j <= 3; j++)
{
// E = rotateLeft(A, 5) + h(B, C, D) + E + X[idx++] + Y4
// B = rotateLeft(B, 30)
E += (A << 5 | A >>> 27) + h(B, C, D) + X[idx++] + Y4;
B = B << 30 | B >>> 2;
D += (E << 5 | E >>> 27) + h(A, B, C) + X[idx++] + Y4;
A = A << 30 | A >>> 2;
C += (D << 5 | D >>> 27) + h(E, A, B) + X[idx++] + Y4;
E = E << 30 | E >>> 2;
B += (C << 5 | C >>> 27) + h(D, E, A) + X[idx++] + Y4;
D = D << 30 | D >>> 2;
A += (B << 5 | B >>> 27) + h(C, D, E) + X[idx++] + Y4;
C = C << 30 | C >>> 2;
}
H1 += A;
H2 += B;
H3 += C;
H4 += D;
H5 += E;
//
// reset start of the buffer.
//
xOff = 0;
for (int i = 0; i < 16; i++)
{
X[i] = 0;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy