org.bouncycastle.math.ec.ECAlgorithms Maven / Gradle / Ivy
package org.bouncycastle.math.ec;
import java.math.BigInteger;
public class ECAlgorithms
{
public static ECPoint sumOfTwoMultiplies(ECPoint P, BigInteger a,
ECPoint Q, BigInteger b)
{
ECCurve c = P.getCurve();
if (!c.equals(Q.getCurve()))
{
throw new IllegalArgumentException("P and Q must be on same curve");
}
// Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
if (c instanceof ECCurve.F2m)
{
ECCurve.F2m f2mCurve = (ECCurve.F2m)c;
if (f2mCurve.isKoblitz())
{
return P.multiply(a).add(Q.multiply(b));
}
}
return implShamirsTrick(P, a, Q, b);
}
/*
* "Shamir's Trick", originally due to E. G. Straus
* (Addition chains of vectors. American Mathematical Monthly,
* 71(7):806-808, Aug./Sept. 1964)
*
* Input: The points P, Q, scalar k = (km?, ... , k1, k0)
* and scalar l = (lm?, ... , l1, l0).
* Output: R = k * P + l * Q.
* 1: Z <- P + Q
* 2: R <- O
* 3: for i from m-1 down to 0 do
* 4: R <- R + R {point doubling}
* 5: if (ki = 1) and (li = 0) then R <- R + P end if
* 6: if (ki = 0) and (li = 1) then R <- R + Q end if
* 7: if (ki = 1) and (li = 1) then R <- R + Z end if
* 8: end for
* 9: return R
*
*/
public static ECPoint shamirsTrick(ECPoint P, BigInteger k,
ECPoint Q, BigInteger l)
{
if (!P.getCurve().equals(Q.getCurve()))
{
throw new IllegalArgumentException("P and Q must be on same curve");
}
return implShamirsTrick(P, k, Q, l);
}
private static ECPoint implShamirsTrick(ECPoint P, BigInteger k,
ECPoint Q, BigInteger l)
{
int m = Math.max(k.bitLength(), l.bitLength());
ECPoint Z = P.add(Q);
ECPoint R = P.getCurve().getInfinity();
for (int i = m - 1; i >= 0; --i)
{
R = R.twice();
if (k.testBit(i))
{
if (l.testBit(i))
{
R = R.add(Z);
}
else
{
R = R.add(P);
}
}
else
{
if (l.testBit(i))
{
R = R.add(Q);
}
}
}
return R;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy