All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.elasticsearch.common.geo.GeoUtils Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to Elasticsearch under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.elasticsearch.common.geo;

import org.apache.lucene.spatial.prefix.tree.GeohashPrefixTree;
import org.apache.lucene.spatial.prefix.tree.QuadPrefixTree;
import org.apache.lucene.util.SloppyMath;
import org.elasticsearch.ElasticsearchParseException;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.common.xcontent.XContentParser.Token;
import org.elasticsearch.index.mapper.geo.GeoPointFieldMapper;

import static org.apache.lucene.spatial.util.GeoDistanceUtils.maxRadialDistanceMeters;

import java.io.IOException;

/**
 */
public class GeoUtils {

    public static final String LATITUDE = GeoPointFieldMapper.Names.LAT;
    public static final String LONGITUDE = GeoPointFieldMapper.Names.LON;
    public static final String GEOHASH = GeoPointFieldMapper.Names.GEOHASH;
    
    /** Earth ellipsoid major axis defined by WGS 84 in meters */
    public static final double EARTH_SEMI_MAJOR_AXIS = 6378137.0;      // meters (WGS 84)

    /** Earth ellipsoid minor axis defined by WGS 84 in meters */
    public static final double EARTH_SEMI_MINOR_AXIS = 6356752.314245; // meters (WGS 84)

    /** Earth mean radius defined by WGS 84 in meters */
    public static final double EARTH_MEAN_RADIUS = 6371008.7714D;      // meters (WGS 84)

    /** Earth axis ratio defined by WGS 84 (0.996647189335) */
    public static final double EARTH_AXIS_RATIO = EARTH_SEMI_MINOR_AXIS / EARTH_SEMI_MAJOR_AXIS;

    /** Earth ellipsoid equator length in meters */
    public static final double EARTH_EQUATOR = 2*Math.PI * EARTH_SEMI_MAJOR_AXIS;

    /** Earth ellipsoid polar distance in meters */
    public static final double EARTH_POLAR_DISTANCE = Math.PI * EARTH_SEMI_MINOR_AXIS;

    /** Returns the minimum between the provided distance 'initialRadius' and the
     * maximum distance/radius from the point 'center' before overlapping
     **/
    public static double maxRadialDistance(GeoPoint center, double initialRadius) {
        final double maxRadius = maxRadialDistanceMeters(center.lon(), center.lat());
        return Math.min(initialRadius, maxRadius);
    }

    /**
     * Return an approximate value of the diameter of the earth (in meters) at the given latitude (in radians).
     */
    public static double earthDiameter(double latitude) {
        // SloppyMath impl returns a result in kilometers
        return SloppyMath.earthDiameter(latitude) * 1000;
    }

    /**
     * Calculate the width (in meters) of geohash cells at a specific level 
     * @param level geohash level must be greater or equal to zero 
     * @return the width of cells at level in meters  
     */
    public static double geoHashCellWidth(int level) {
        assert level>=0;
        // Geohash cells are split into 32 cells at each level. the grid
        // alternates at each level between a 8x4 and a 4x8 grid 
        return EARTH_EQUATOR / (1L<<((((level+1)/2)*3) + ((level/2)*2)));
    }

    /**
     * Calculate the width (in meters) of quadtree cells at a specific level 
     * @param level quadtree level must be greater or equal to zero 
     * @return the width of cells at level in meters  
     */
    public static double quadTreeCellWidth(int level) {
        assert level >=0;
        return EARTH_EQUATOR / (1L<=0;
        // Geohash cells are split into 32 cells at each level. the grid
        // alternates at each level between a 8x4 and a 4x8 grid 
        return EARTH_POLAR_DISTANCE / (1L<<((((level+1)/2)*2) + ((level/2)*3)));
    }
    
    /**
     * Calculate the height (in meters) of quadtree cells at a specific level 
     * @param level quadtree level must be greater or equal to zero 
     * @return the height of cells at level in meters  
     */
    public static double quadTreeCellHeight(int level) {
        assert level>=0;
        return EARTH_POLAR_DISTANCE / (1L<=0;
        final double w = geoHashCellWidth(level);
        final double h = geoHashCellHeight(level);
        return Math.sqrt(w*w + h*h);
    }

    /**
     * Calculate the size (in meters) of quadtree cells at a specific level 
     * @param level quadtree level must be greater or equal to zero 
     * @return the size of cells at level in meters  
     */
    public static double quadTreeCellSize(int level) {
        assert level>=0;
        return Math.sqrt(EARTH_POLAR_DISTANCE*EARTH_POLAR_DISTANCE + EARTH_EQUATOR*EARTH_EQUATOR) / (1L<= 0;
        if(meters == 0) {
            return QuadPrefixTree.MAX_LEVELS_POSSIBLE;
        } else {
            final double ratio = 1+(EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio
            final double width = Math.sqrt((meters*meters)/(ratio*ratio)); // convert to cell width
            final long part = Math.round(Math.ceil(EARTH_EQUATOR / width));
            final int level = Long.SIZE - Long.numberOfLeadingZeros(part)-1; // (log_2)
            return (part<=(1l<= 0;
        
        if(meters == 0) {
            return GeohashPrefixTree.getMaxLevelsPossible();
        } else {
            final double ratio = 1+(EARTH_POLAR_DISTANCE / EARTH_EQUATOR); // cell ratio
            final double width = Math.sqrt((meters*meters)/(ratio*ratio)); // convert to cell width
            final double part = Math.ceil(EARTH_EQUATOR / width);
            if(part == 1)
                return 1;
            final int bits = (int)Math.round(Math.ceil(Math.log(part) / Math.log(2)));
            final int full = bits / 5;                // number of 5 bit subdivisions    
            final int left = bits - full*5;           // bit representing the last level
            final int even = full + (left>0?1:0);     // number of even levels
            final int odd = full + (left>3?1:0);      // number of odd levels
            return even+odd;
        }
    }
    
    /**
     * Calculate the number of levels needed for a specific precision. GeoHash
     * cells will not exceed the specified size (diagonal) of the precision.
     * @param distance Maximum size of cells as unit string (must greater or equal to zero)
     * @return levels need to achieve precision  
     */
    public static int geoHashLevelsForPrecision(String distance) {
        return geoHashLevelsForPrecision(DistanceUnit.METERS.parse(distance, DistanceUnit.DEFAULT));
    }

    /**
     * Normalize longitude to lie within the -180 (exclusive) to 180 (inclusive) range.
     *
     * @param lon Longitude to normalize
     * @return The normalized longitude.
     */
    public static double normalizeLon(double lon) {
        return centeredModulus(lon, 360);
    }

    /**
     * Normalize latitude to lie within the -90 to 90 (both inclusive) range.
     * 

* Note: You should not normalize longitude and latitude separately, * because when normalizing latitude it may be necessary to * add a shift of 180° in the longitude. * For this purpose, you should call the * {@link #normalizePoint(GeoPoint)} function. * * @param lat Latitude to normalize * @return The normalized latitude. * @see #normalizePoint(GeoPoint) */ public static double normalizeLat(double lat) { lat = centeredModulus(lat, 360); if (lat < -90) { lat = -180 - lat; } else if (lat > 90) { lat = 180 - lat; } return lat; } /** * Normalize the geo {@code Point} for its coordinates to lie within their * respective normalized ranges. *

* Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * * @param point The point to normalize in-place. */ public static void normalizePoint(GeoPoint point) { normalizePoint(point, true, true); } /** * Normalize the geo {@code Point} for the given coordinates to lie within * their respective normalized ranges. *

* You can control which coordinate gets normalized with the two flags. *

* Note: A shift of 180° is applied in the longitude if necessary, * in order to normalize properly the latitude. * If normalizing latitude but not longitude, it is assumed that * the longitude is in the form x+k*360, with x in ]-180;180], * and k is meaningful to the application. * Therefore x will be adjusted while keeping k preserved. * * @param point The point to normalize in-place. * @param normLat Whether to normalize latitude or leave it as is. * @param normLon Whether to normalize longitude. */ public static void normalizePoint(GeoPoint point, boolean normLat, boolean normLon) { double[] pt = {point.lon(), point.lat()}; normalizePoint(pt, normLon, normLat); point.reset(pt[1], pt[0]); } public static void normalizePoint(double[] lonLat) { normalizePoint(lonLat, true, true); } public static void normalizePoint(double[] lonLat, boolean normLon, boolean normLat) { assert lonLat != null && lonLat.length == 2; normLat = normLat && (lonLat[1] > 90 || lonLat[1] < -90); normLon = normLon && (lonLat[0] > 180 || lonLat[0] < -180); if (normLat) { lonLat[1] = centeredModulus(lonLat[1], 360); boolean shift = true; if (lonLat[1] < -90) { lonLat[1] = -180 - lonLat[1]; } else if (lonLat[1] > 90) { lonLat[1] = 180 - lonLat[1]; } else { // No need to shift the longitude, and the latitude is normalized shift = false; } if (shift) { if (normLon) { lonLat[0] += 180; } else { // Longitude won't be normalized, // keep it in the form x+k*360 (with x in ]-180;180]) // by only changing x, assuming k is meaningful for the user application. lonLat[0] += normalizeLon(lonLat[0]) > 0 ? -180 : 180; } } } if (normLon) { lonLat[0] = centeredModulus(lonLat[0], 360); } } private static double centeredModulus(double dividend, double divisor) { double rtn = dividend % divisor; if (rtn <= 0) { rtn += divisor; } if (rtn > divisor / 2) { rtn -= divisor; } return rtn; } /** * Parse a {@link GeoPoint} with a {@link XContentParser}: * * @param parser {@link XContentParser} to parse the value from * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint(XContentParser parser) throws IOException, ElasticsearchParseException { return parseGeoPoint(parser, new GeoPoint()); } /** * Parse a {@link GeoPoint} with a {@link XContentParser}. A geopoint has one of the following forms: * *

    *
  • Object:
    {"lat": <latitude>, "lon": <longitude>}
  • *
  • String:
    "<latitude>,<longitude>"
  • *
  • Geohash:
    "<geohash>"
  • *
  • Array:
    [<longitude>,<latitude>]
  • *
* * @param parser {@link XContentParser} to parse the value from * @param point A {@link GeoPoint} that will be reset by the values parsed * @return new {@link GeoPoint} parsed from the parse */ public static GeoPoint parseGeoPoint(XContentParser parser, GeoPoint point) throws IOException, ElasticsearchParseException { double lat = Double.NaN; double lon = Double.NaN; String geohash = null; if(parser.currentToken() == Token.START_OBJECT) { while(parser.nextToken() != Token.END_OBJECT) { if(parser.currentToken() == Token.FIELD_NAME) { String field = parser.currentName(); if(LATITUDE.equals(field)) { parser.nextToken(); switch (parser.currentToken()) { case VALUE_NUMBER: case VALUE_STRING: lat = parser.doubleValue(true); break; default: throw new ElasticsearchParseException("latitude must be a number"); } } else if (LONGITUDE.equals(field)) { parser.nextToken(); switch (parser.currentToken()) { case VALUE_NUMBER: case VALUE_STRING: lon = parser.doubleValue(true); break; default: throw new ElasticsearchParseException("longitude must be a number"); } } else if (GEOHASH.equals(field)) { if(parser.nextToken() == Token.VALUE_STRING) { geohash = parser.text(); } else { throw new ElasticsearchParseException("geohash must be a string"); } } else { throw new ElasticsearchParseException("field must be either [{}], [{}] or [{}]", LATITUDE, LONGITUDE, GEOHASH); } } else { throw new ElasticsearchParseException("token [{}] not allowed", parser.currentToken()); } } if (geohash != null) { if(!Double.isNaN(lat) || !Double.isNaN(lon)) { throw new ElasticsearchParseException("field must be either lat/lon or geohash"); } else { return point.resetFromGeoHash(geohash); } } else if (Double.isNaN(lat)) { throw new ElasticsearchParseException("field [{}] missing", LATITUDE); } else if (Double.isNaN(lon)) { throw new ElasticsearchParseException("field [{}] missing", LONGITUDE); } else { return point.reset(lat, lon); } } else if(parser.currentToken() == Token.START_ARRAY) { int element = 0; while(parser.nextToken() != Token.END_ARRAY) { if(parser.currentToken() == Token.VALUE_NUMBER) { element++; if(element == 1) { lon = parser.doubleValue(); } else if(element == 2) { lat = parser.doubleValue(); } else { throw new ElasticsearchParseException("only two values allowed"); } } else { throw new ElasticsearchParseException("numeric value expected"); } } return point.reset(lat, lon); } else if(parser.currentToken() == Token.VALUE_STRING) { String data = parser.text(); return parseGeoPoint(data, point); } else { throw new ElasticsearchParseException("geo_point expected"); } } /** parse a {@link GeoPoint} from a String */ public static GeoPoint parseGeoPoint(String data, GeoPoint point) { int comma = data.indexOf(','); if(comma > 0) { double lat = Double.parseDouble(data.substring(0, comma).trim()); double lon = Double.parseDouble(data.substring(comma + 1).trim()); return point.reset(lat, lon); } else { return point.resetFromGeoHash(data); } } private GeoUtils() { } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy