lightstep.com.google.protobuf.CodedInputStream Maven / Gradle / Ivy
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package lightstep.com.lightstep.lightstep.google.protobuf;
import static lightstep.com.lightstep.lightstep.google.protobuf.Internal.EMPTY_BYTE_ARRAY;
import static lightstep.com.lightstep.lightstep.google.protobuf.Internal.EMPTY_BYTE_BUFFER;
import static lightstep.com.lightstep.lightstep.google.protobuf.Internal.UTF_8;
import static lightstep.com.lightstep.lightstep.google.protobuf.Internal.checkNotNull;
import static lightstep.com.lightstep.lightstep.google.protobuf.WireFormat.FIXED32_SIZE;
import static lightstep.com.lightstep.lightstep.google.protobuf.WireFormat.FIXED64_SIZE;
import static lightstep.com.lightstep.lightstep.google.protobuf.WireFormat.MAX_VARINT_SIZE;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Reads and decodes protocol message fields.
*
* This class contains two kinds of methods: methods that read specific protocol message
* constructs and field types (e.g. {@link #readTag()} and {@link #readInt32()}) and methods that
* read low-level values (e.g. {@link #readRawVarint32()} and {@link #readRawBytes}). If you are
* reading encoded protocol messages, you should use the former methods, but if you are reading some
* other format of your own design, use the latter.
*
* @author [email protected] Kenton Varda
*/
public abstract class CodedInputStream {
private static final int DEFAULT_BUFFER_SIZE = 4096;
private static final int DEFAULT_RECURSION_LIMIT = 100;
// Integer.MAX_VALUE == 0x7FFFFFF == INT_MAX from limits.h
private static final int DEFAULT_SIZE_LIMIT = Integer.MAX_VALUE;
/** Visible for subclasses. See setRecursionLimit() */
int recursionDepth;
int recursionLimit = DEFAULT_RECURSION_LIMIT;
/** Visible for subclasses. See setSizeLimit() */
int sizeLimit = DEFAULT_SIZE_LIMIT;
/** Create a new CodedInputStream wrapping the given InputStream. */
public static CodedInputStream newInstance(final InputStream input) {
return newInstance(input, DEFAULT_BUFFER_SIZE);
}
/** Create a new CodedInputStream wrapping the given InputStream. */
static CodedInputStream newInstance(final InputStream input, int bufferSize) {
if (input == null) {
// TODO(nathanmittler): Ideally we should throw here. This is done for backward compatibility.
return newInstance(EMPTY_BYTE_ARRAY);
}
return new StreamDecoder(input, bufferSize);
}
/** Create a new CodedInputStream wrapping the given byte array. */
public static CodedInputStream newInstance(final byte[] buf) {
return newInstance(buf, 0, buf.length);
}
/** Create a new CodedInputStream wrapping the given byte array slice. */
public static CodedInputStream newInstance(final byte[] buf, final int off, final int len) {
return newInstance(buf, off, len, false /* bufferIsImmutable */);
}
/** Create a new CodedInputStream wrapping the given byte array slice. */
static CodedInputStream newInstance(
final byte[] buf, final int off, final int len, final boolean bufferIsImmutable) {
ArrayDecoder result = new ArrayDecoder(buf, off, len, bufferIsImmutable);
try {
// Some uses of CodedInputStream can be more efficient if they know
// exactly how many bytes are available. By pushing the end point of the
// buffer as a limit, we allow them to get this information via
// getBytesUntilLimit(). Pushing a limit that we know is at the end of
// the stream can never hurt, since we can never past that point anyway.
result.pushLimit(len);
} catch (InvalidProtocolBufferException ex) {
// The only reason pushLimit() might throw an exception here is if len
// is negative. Normally pushLimit()'s parameter comes directly off the
// wire, so it's important to catch exceptions in case of corrupt or
// malicious data. However, in this case, we expect that len is not a
// user-supplied value, so we can assume that it being negative indicates
// a programming error. Therefore, throwing an unchecked exception is
// appropriate.
throw new IllegalArgumentException(ex);
}
return result;
}
/**
* Create a new CodedInputStream wrapping the given ByteBuffer. The data starting from the
* ByteBuffer's current position to its limit will be read. The returned CodedInputStream may or
* may not share the underlying data in the ByteBuffer, therefore the ByteBuffer cannot be changed
* while the CodedInputStream is in use. Note that the ByteBuffer's position won't be changed by
* this function. Concurrent calls with the same ByteBuffer object are safe if no other thread is
* trying to alter the ByteBuffer's status.
*/
public static CodedInputStream newInstance(ByteBuffer buf) {
return newInstance(buf, false /* bufferIsImmutable */);
}
/** Create a new CodedInputStream wrapping the given buffer. */
static CodedInputStream newInstance(ByteBuffer buf, boolean bufferIsImmutable) {
if (buf.hasArray()) {
return newInstance(
buf.array(), buf.arrayOffset() + buf.position(), buf.remaining(), bufferIsImmutable);
}
if (buf.isDirect() && UnsafeDirectNioDecoder.isSupported()) {
return new UnsafeDirectNioDecoder(buf, bufferIsImmutable);
}
// The buffer is non-direct and does not expose the underlying array. Using the ByteBuffer API
// to access individual bytes is very slow, so just copy the buffer to an array.
// TODO(nathanmittler): Re-evaluate with Java 9
byte[] buffer = new byte[buf.remaining()];
buf.duplicate().get(buffer);
return newInstance(buffer, 0, buffer.length, true);
}
/** Disable construction/inheritance outside of this class. */
private CodedInputStream() {}
// -----------------------------------------------------------------
/**
* Attempt to read a field tag, returning zero if we have reached EOF. Protocol message parsers
* use this to read tags, since a protocol message may legally end wherever a tag occurs, and zero
* is not a valid tag number.
*/
public abstract int readTag() throws IOException;
/**
* Verifies that the last call to readTag() returned the given tag value. This is used to verify
* that a nested group ended with the correct end tag.
*
* @throws InvalidProtocolBufferException {@code value} does not match the last tag.
*/
public abstract void checkLastTagWas(final int value) throws InvalidProtocolBufferException;
public abstract int getLastTag();
/**
* Reads and discards a single field, given its tag value.
*
* @return {@code false} if the tag is an endgroup tag, in which case nothing is skipped.
* Otherwise, returns {@code true}.
*/
public abstract boolean skipField(final int tag) throws IOException;
/**
* Reads a single field and writes it to output in wire format, given its tag value.
*
* @return {@code false} if the tag is an endgroup tag, in which case nothing is skipped.
* Otherwise, returns {@code true}.
* @deprecated use {@code UnknownFieldSet} or {@code UnknownFieldSetLite} to skip to an output
* stream.
*/
@Deprecated
public abstract boolean skipField(final int tag, final CodedOutputStream output)
throws IOException;
/**
* Reads and discards an entire message. This will read either until EOF or until an endgroup tag,
* whichever comes first.
*/
public abstract void skipMessage() throws IOException;
/**
* Reads an entire message and writes it to output in wire format. This will read either until EOF
* or until an endgroup tag, whichever comes first.
*/
public abstract void skipMessage(CodedOutputStream output) throws IOException;
// -----------------------------------------------------------------
/** Read a {@code double} field value from the stream. */
public abstract double readDouble() throws IOException;
/** Read a {@code float} field value from the stream. */
public abstract float readFloat() throws IOException;
/** Read a {@code uint64} field value from the stream. */
public abstract long readUInt64() throws IOException;
/** Read an {@code int64} field value from the stream. */
public abstract long readInt64() throws IOException;
/** Read an {@code int32} field value from the stream. */
public abstract int readInt32() throws IOException;
/** Read a {@code fixed64} field value from the stream. */
public abstract long readFixed64() throws IOException;
/** Read a {@code fixed32} field value from the stream. */
public abstract int readFixed32() throws IOException;
/** Read a {@code bool} field value from the stream. */
public abstract boolean readBool() throws IOException;
/**
* Read a {@code string} field value from the stream. If the stream contains malformed UTF-8,
* replace the offending bytes with the standard UTF-8 replacement character.
*/
public abstract String readString() throws IOException;
/**
* Read a {@code string} field value from the stream. If the stream contains malformed UTF-8,
* throw exception {@link InvalidProtocolBufferException}.
*/
public abstract String readStringRequireUtf8() throws IOException;
/** Read a {@code group} field value from the stream. */
public abstract void readGroup(
final int fieldNumber,
final MessageLite.Builder builder,
final ExtensionRegistryLite extensionRegistry)
throws IOException;
/** Read a {@code group} field value from the stream. */
public abstract T readGroup(
final int fieldNumber, final Parser parser, final ExtensionRegistryLite extensionRegistry)
throws IOException;
/**
* Reads a {@code group} field value from the stream and merges it into the given {@link
* UnknownFieldSet}.
*
* @deprecated UnknownFieldSet.Builder now implements MessageLite.Builder, so you can just call
* {@link #readGroup}.
*/
@Deprecated
public abstract void readUnknownGroup(final int fieldNumber, final MessageLite.Builder builder)
throws IOException;
/** Read an embedded message field value from the stream. */
public abstract void readMessage(
final MessageLite.Builder builder, final ExtensionRegistryLite extensionRegistry)
throws IOException;
/** Read an embedded message field value from the stream. */
public abstract T readMessage(
final Parser parser, final ExtensionRegistryLite extensionRegistry) throws IOException;
/** Read a {@code bytes} field value from the stream. */
public abstract ByteString readBytes() throws IOException;
/** Read a {@code bytes} field value from the stream. */
public abstract byte[] readByteArray() throws IOException;
/** Read a {@code bytes} field value from the stream. */
public abstract ByteBuffer readByteBuffer() throws IOException;
/** Read a {@code uint32} field value from the stream. */
public abstract int readUInt32() throws IOException;
/**
* Read an enum field value from the stream. Caller is responsible for converting the numeric
* value to an actual enum.
*/
public abstract int readEnum() throws IOException;
/** Read an {@code sfixed32} field value from the stream. */
public abstract int readSFixed32() throws IOException;
/** Read an {@code sfixed64} field value from the stream. */
public abstract long readSFixed64() throws IOException;
/** Read an {@code sint32} field value from the stream. */
public abstract int readSInt32() throws IOException;
/** Read an {@code sint64} field value from the stream. */
public abstract long readSInt64() throws IOException;
// =================================================================
/** Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. */
public abstract int readRawVarint32() throws IOException;
/** Read a raw Varint from the stream. */
public abstract long readRawVarint64() throws IOException;
/** Variant of readRawVarint64 for when uncomfortably close to the limit. */
/* Visible for testing */
abstract long readRawVarint64SlowPath() throws IOException;
/** Read a 32-bit little-endian integer from the stream. */
public abstract int readRawLittleEndian32() throws IOException;
/** Read a 64-bit little-endian integer from the stream. */
public abstract long readRawLittleEndian64() throws IOException;
// -----------------------------------------------------------------
/**
* Enables {@link ByteString} aliasing of the underlying buffer, trading off on buffer pinning for
* data copies. Only valid for buffer-backed streams.
*/
public abstract void enableAliasing(boolean enabled);
/**
* Set the maximum message recursion depth. In order to prevent malicious messages from causing
* stack overflows, {@code CodedInputStream} limits how deeply messages may be nested. The default
* limit is 64.
*
* @return the old limit.
*/
public final int setRecursionLimit(final int limit) {
if (limit < 0) {
throw new IllegalArgumentException("Recursion limit cannot be negative: " + limit);
}
final int oldLimit = recursionLimit;
recursionLimit = limit;
return oldLimit;
}
/**
* Only valid for {@link InputStream}-backed streams.
*
* Set the maximum message size. In order to prevent malicious messages from exhausting memory
* or causing integer overflows, {@code CodedInputStream} limits how large a message may be. The
* default limit is {@code Integer.MAX_INT}. You should set this limit as small as you can without
* harming your app's functionality. Note that size limits only apply when reading from an {@code
* InputStream}, not when constructed around a raw byte array.
*
*
If you want to read several messages from a single CodedInputStream, you could call {@link
* #resetSizeCounter()} after each one to avoid hitting the size limit.
*
* @return the old limit.
*/
public final int setSizeLimit(final int limit) {
if (limit < 0) {
throw new IllegalArgumentException("Size limit cannot be negative: " + limit);
}
final int oldLimit = sizeLimit;
sizeLimit = limit;
return oldLimit;
}
private boolean explicitDiscardUnknownFields = false;
/** TODO(liujisi): flip the default.*/
private static volatile boolean proto3DiscardUnknownFieldsDefault = true;
static void setProto3DiscardUnknownsByDefaultForTest() {
proto3DiscardUnknownFieldsDefault = true;
}
static void setProto3KeepUnknownsByDefaultForTest() {
proto3DiscardUnknownFieldsDefault = false;
}
static boolean getProto3DiscardUnknownFieldsDefault() {
return proto3DiscardUnknownFieldsDefault;
}
/**
* Sets this {@code CodedInputStream} to discard unknown fields. Only applies to full runtime
* messages; lite messages will always preserve unknowns.
*
*
Note calling this function alone will have NO immediate effect on the underlying input data.
* The unknown fields will be discarded during parsing. This affects both Proto2 and Proto3 full
* runtime.
*/
final void discardUnknownFields() {
explicitDiscardUnknownFields = true;
}
/**
* Reverts the unknown fields preservation behavior for Proto2 and Proto3 full runtime to their
* default.
*/
final void unsetDiscardUnknownFields() {
explicitDiscardUnknownFields = false;
}
/**
* Whether unknown fields in this input stream should be discarded during parsing into full
* runtime messages.
*/
final boolean shouldDiscardUnknownFields() {
return explicitDiscardUnknownFields;
}
/**
* Whether unknown fields in this input stream should be discarded during parsing for proto3 full
* runtime messages.
*
*
This function was temporarily introduced before proto3 unknown fields behavior is changed.
* TODO(liujisi): remove this and related code in GeneratedMessage after proto3 unknown
* fields migration is done.
*/
final boolean shouldDiscardUnknownFieldsProto3() {
return explicitDiscardUnknownFields ? true : proto3DiscardUnknownFieldsDefault;
}
/**
* Resets the current size counter to zero (see {@link #setSizeLimit(int)}). Only valid for {@link
* InputStream}-backed streams.
*/
public abstract void resetSizeCounter();
/**
* Sets {@code currentLimit} to (current position) + {@code byteLimit}. This is called when
* descending into a length-delimited embedded message.
*
*
Note that {@code pushLimit()} does NOT affect how many bytes the {@code CodedInputStream}
* reads from an underlying {@code InputStream} when refreshing its buffer. If you need to prevent
* reading past a certain point in the underlying {@code InputStream} (e.g. because you expect it
* to contain more data after the end of the message which you need to handle differently) then
* you must place a wrapper around your {@code InputStream} which limits the amount of data that
* can be read from it.
*
* @return the old limit.
*/
public abstract int pushLimit(int byteLimit) throws InvalidProtocolBufferException;
/**
* Discards the current limit, returning to the previous limit.
*
* @param oldLimit The old limit, as returned by {@code pushLimit}.
*/
public abstract void popLimit(final int oldLimit);
/**
* Returns the number of bytes to be read before the current limit. If no limit is set, returns
* -1.
*/
public abstract int getBytesUntilLimit();
/**
* Returns true if the stream has reached the end of the input. This is the case if either the end
* of the underlying input source has been reached or if the stream has reached a limit created
* using {@link #pushLimit(int)}.
*/
public abstract boolean isAtEnd() throws IOException;
/**
* The total bytes read up to the current position. Calling {@link #resetSizeCounter()} resets
* this value to zero.
*/
public abstract int getTotalBytesRead();
/**
* Read one byte from the input.
*
* @throws InvalidProtocolBufferException The end of the stream or the current limit was reached.
*/
public abstract byte readRawByte() throws IOException;
/**
* Read a fixed size of bytes from the input.
*
* @throws InvalidProtocolBufferException The end of the stream or the current limit was reached.
*/
public abstract byte[] readRawBytes(final int size) throws IOException;
/**
* Reads and discards {@code size} bytes.
*
* @throws InvalidProtocolBufferException The end of the stream or the current limit was reached.
*/
public abstract void skipRawBytes(final int size) throws IOException;
/**
* Decode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers into values that can be
* efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits
* to be varint encoded, thus always taking 10 bytes on the wire.)
*
* @param n An unsigned 32-bit integer, stored in a signed int because Java has no explicit
* unsigned support.
* @return A signed 32-bit integer.
*/
public static int decodeZigZag32(final int n) {
return (n >>> 1) ^ -(n & 1);
}
/**
* Decode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be
* efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits
* to be varint encoded, thus always taking 10 bytes on the wire.)
*
* @param n An unsigned 64-bit integer, stored in a signed int because Java has no explicit
* unsigned support.
* @return A signed 64-bit integer.
*/
public static long decodeZigZag64(final long n) {
return (n >>> 1) ^ -(n & 1);
}
/**
* Like {@link #readRawVarint32(InputStream)}, but expects that the caller has already read one
* byte. This allows the caller to determine if EOF has been reached before attempting to read.
*/
public static int readRawVarint32(final int firstByte, final InputStream input)
throws IOException {
if ((firstByte & 0x80) == 0) {
return firstByte;
}
int result = firstByte & 0x7f;
int offset = 7;
for (; offset < 32; offset += 7) {
final int b = input.read();
if (b == -1) {
throw InvalidProtocolBufferException.truncatedMessage();
}
result |= (b & 0x7f) << offset;
if ((b & 0x80) == 0) {
return result;
}
}
// Keep reading up to 64 bits.
for (; offset < 64; offset += 7) {
final int b = input.read();
if (b == -1) {
throw InvalidProtocolBufferException.truncatedMessage();
}
if ((b & 0x80) == 0) {
return result;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
/**
* Reads a varint from the input one byte at a time, so that it does not read any bytes after the
* end of the varint. If you simply wrapped the stream in a CodedInputStream and used {@link
* #readRawVarint32(InputStream)} then you would probably end up reading past the end of the
* varint since CodedInputStream buffers its input.
*/
static int readRawVarint32(final InputStream input) throws IOException {
final int firstByte = input.read();
if (firstByte == -1) {
throw InvalidProtocolBufferException.truncatedMessage();
}
return readRawVarint32(firstByte, input);
}
/** A {@link CodedInputStream} implementation that uses a backing array as the input. */
private static final class ArrayDecoder extends CodedInputStream {
private final byte[] buffer;
private final boolean immutable;
private int limit;
private int bufferSizeAfterLimit;
private int pos;
private int startPos;
private int lastTag;
private boolean enableAliasing;
/** The absolute position of the end of the current message. */
private int currentLimit = Integer.MAX_VALUE;
private ArrayDecoder(final byte[] buffer, final int offset, final int len, boolean immutable) {
this.buffer = buffer;
limit = offset + len;
pos = offset;
startPos = pos;
this.immutable = immutable;
}
@Override
public int readTag() throws IOException {
if (isAtEnd()) {
lastTag = 0;
return 0;
}
lastTag = readRawVarint32();
if (WireFormat.getTagFieldNumber(lastTag) == 0) {
// If we actually read zero (or any tag number corresponding to field
// number zero), that's not a valid tag.
throw InvalidProtocolBufferException.invalidTag();
}
return lastTag;
}
@Override
public void checkLastTagWas(final int value) throws InvalidProtocolBufferException {
if (lastTag != value) {
throw InvalidProtocolBufferException.invalidEndTag();
}
}
@Override
public int getLastTag() {
return lastTag;
}
@Override
public boolean skipField(final int tag) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
skipRawVarint();
return true;
case WireFormat.WIRETYPE_FIXED64:
skipRawBytes(FIXED64_SIZE);
return true;
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
skipRawBytes(readRawVarint32());
return true;
case WireFormat.WIRETYPE_START_GROUP:
skipMessage();
checkLastTagWas(
WireFormat.makeTag(WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP));
return true;
case WireFormat.WIRETYPE_END_GROUP:
return false;
case WireFormat.WIRETYPE_FIXED32:
skipRawBytes(FIXED32_SIZE);
return true;
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public boolean skipField(final int tag, final CodedOutputStream output) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
{
long value = readInt64();
output.writeRawVarint32(tag);
output.writeUInt64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_FIXED64:
{
long value = readRawLittleEndian64();
output.writeRawVarint32(tag);
output.writeFixed64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
{
ByteString value = readBytes();
output.writeRawVarint32(tag);
output.writeBytesNoTag(value);
return true;
}
case WireFormat.WIRETYPE_START_GROUP:
{
output.writeRawVarint32(tag);
skipMessage(output);
int endtag =
WireFormat.makeTag(
WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP);
checkLastTagWas(endtag);
output.writeRawVarint32(endtag);
return true;
}
case WireFormat.WIRETYPE_END_GROUP:
{
return false;
}
case WireFormat.WIRETYPE_FIXED32:
{
int value = readRawLittleEndian32();
output.writeRawVarint32(tag);
output.writeFixed32NoTag(value);
return true;
}
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public void skipMessage() throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag)) {
return;
}
}
}
@Override
public void skipMessage(CodedOutputStream output) throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag, output)) {
return;
}
}
}
// -----------------------------------------------------------------
@Override
public double readDouble() throws IOException {
return Double.longBitsToDouble(readRawLittleEndian64());
}
@Override
public float readFloat() throws IOException {
return Float.intBitsToFloat(readRawLittleEndian32());
}
@Override
public long readUInt64() throws IOException {
return readRawVarint64();
}
@Override
public long readInt64() throws IOException {
return readRawVarint64();
}
@Override
public int readInt32() throws IOException {
return readRawVarint32();
}
@Override
public long readFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public boolean readBool() throws IOException {
return readRawVarint64() != 0;
}
@Override
public String readString() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= (limit - pos)) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
final String result = new String(buffer, pos, size, UTF_8);
pos += size;
return result;
}
if (size == 0) {
return "";
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public String readStringRequireUtf8() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= (limit - pos)) {
// TODO(martinrb): We could save a pass by validating while decoding.
if (!Utf8.isValidUtf8(buffer, pos, pos + size)) {
throw InvalidProtocolBufferException.invalidUtf8();
}
final int tempPos = pos;
pos += size;
return new String(buffer, tempPos, size, UTF_8);
}
if (size == 0) {
return "";
}
if (size <= 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public void readGroup(
final int fieldNumber,
final MessageLite.Builder builder,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
}
@Override
public T readGroup(
final int fieldNumber,
final Parser parser,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
return result;
}
@Deprecated
@Override
public void readUnknownGroup(final int fieldNumber, final MessageLite.Builder builder)
throws IOException {
readGroup(fieldNumber, builder, ExtensionRegistryLite.getEmptyRegistry());
}
@Override
public void readMessage(
final MessageLite.Builder builder, final ExtensionRegistryLite extensionRegistry)
throws IOException {
final int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
}
@Override
public T readMessage(
final Parser parser, final ExtensionRegistryLite extensionRegistry) throws IOException {
int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
return result;
}
@Override
public ByteString readBytes() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= (limit - pos)) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
final ByteString result =
immutable && enableAliasing
? ByteString.wrap(buffer, pos, size)
: ByteString.copyFrom(buffer, pos, size);
pos += size;
return result;
}
if (size == 0) {
return ByteString.EMPTY;
}
// Slow path: Build a byte array first then copy it.
return ByteString.wrap(readRawBytes(size));
}
@Override
public byte[] readByteArray() throws IOException {
final int size = readRawVarint32();
return readRawBytes(size);
}
@Override
public ByteBuffer readByteBuffer() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= (limit - pos)) {
// Fast path: We already have the bytes in a contiguous buffer.
// When aliasing is enabled, we can return a ByteBuffer pointing directly
// into the underlying byte array without copy if the CodedInputStream is
// constructed from a byte array. If aliasing is disabled or the input is
// from an InputStream or ByteString, we have to make a copy of the bytes.
ByteBuffer result =
!immutable && enableAliasing
? ByteBuffer.wrap(buffer, pos, size).slice()
: ByteBuffer.wrap(Arrays.copyOfRange(buffer, pos, pos + size));
pos += size;
// TODO(nathanmittler): Investigate making the ByteBuffer be made read-only
return result;
}
if (size == 0) {
return EMPTY_BYTE_BUFFER;
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public int readUInt32() throws IOException {
return readRawVarint32();
}
@Override
public int readEnum() throws IOException {
return readRawVarint32();
}
@Override
public int readSFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public long readSFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readSInt32() throws IOException {
return decodeZigZag32(readRawVarint32());
}
@Override
public long readSInt64() throws IOException {
return decodeZigZag64(readRawVarint64());
}
// =================================================================
@Override
public int readRawVarint32() throws IOException {
// See implementation notes for readRawVarint64
fastpath:
{
int tempPos = pos;
if (limit == tempPos) {
break fastpath;
}
final byte[] buffer = this.buffer;
int x;
if ((x = buffer[tempPos++]) >= 0) {
pos = tempPos;
return x;
} else if (limit - tempPos < 9) {
break fastpath;
} else if ((x ^= (buffer[tempPos++] << 7)) < 0) {
x ^= (~0 << 7);
} else if ((x ^= (buffer[tempPos++] << 14)) >= 0) {
x ^= (~0 << 7) ^ (~0 << 14);
} else if ((x ^= (buffer[tempPos++] << 21)) < 0) {
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21);
} else {
int y = buffer[tempPos++];
x ^= y << 28;
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21) ^ (~0 << 28);
if (y < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0) {
break fastpath; // Will throw malformedVarint()
}
}
pos = tempPos;
return x;
}
return (int) readRawVarint64SlowPath();
}
private void skipRawVarint() throws IOException {
if (limit - pos >= MAX_VARINT_SIZE) {
skipRawVarintFastPath();
} else {
skipRawVarintSlowPath();
}
}
private void skipRawVarintFastPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (buffer[pos++] >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
private void skipRawVarintSlowPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (readRawByte() >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public long readRawVarint64() throws IOException {
// Implementation notes:
//
// Optimized for one-byte values, expected to be common.
// The particular code below was selected from various candidates
// empirically, by winning VarintBenchmark.
//
// Sign extension of (signed) Java bytes is usually a nuisance, but
// we exploit it here to more easily obtain the sign of bytes read.
// Instead of cleaning up the sign extension bits by masking eagerly,
// we delay until we find the final (positive) byte, when we clear all
// accumulated bits with one xor. We depend on javac to constant fold.
fastpath:
{
int tempPos = pos;
if (limit == tempPos) {
break fastpath;
}
final byte[] buffer = this.buffer;
long x;
int y;
if ((y = buffer[tempPos++]) >= 0) {
pos = tempPos;
return y;
} else if (limit - tempPos < 9) {
break fastpath;
} else if ((y ^= (buffer[tempPos++] << 7)) < 0) {
x = y ^ (~0 << 7);
} else if ((y ^= (buffer[tempPos++] << 14)) >= 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14));
} else if ((y ^= (buffer[tempPos++] << 21)) < 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14) ^ (~0 << 21));
} else if ((x = y ^ ((long) buffer[tempPos++] << 28)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28);
} else if ((x ^= ((long) buffer[tempPos++] << 35)) < 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35);
} else if ((x ^= ((long) buffer[tempPos++] << 42)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35) ^ (~0L << 42);
} else if ((x ^= ((long) buffer[tempPos++] << 49)) < 0L) {
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49);
} else {
x ^= ((long) buffer[tempPos++] << 56);
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49)
^ (~0L << 56);
if (x < 0L) {
if (buffer[tempPos++] < 0L) {
break fastpath; // Will throw malformedVarint()
}
}
}
pos = tempPos;
return x;
}
return readRawVarint64SlowPath();
}
@Override
long readRawVarint64SlowPath() throws IOException {
long result = 0;
for (int shift = 0; shift < 64; shift += 7) {
final byte b = readRawByte();
result |= (long) (b & 0x7F) << shift;
if ((b & 0x80) == 0) {
return result;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public int readRawLittleEndian32() throws IOException {
int tempPos = pos;
if (limit - tempPos < FIXED32_SIZE) {
throw InvalidProtocolBufferException.truncatedMessage();
}
final byte[] buffer = this.buffer;
pos = tempPos + FIXED32_SIZE;
return (((buffer[tempPos] & 0xff))
| ((buffer[tempPos + 1] & 0xff) << 8)
| ((buffer[tempPos + 2] & 0xff) << 16)
| ((buffer[tempPos + 3] & 0xff) << 24));
}
@Override
public long readRawLittleEndian64() throws IOException {
int tempPos = pos;
if (limit - tempPos < FIXED64_SIZE) {
throw InvalidProtocolBufferException.truncatedMessage();
}
final byte[] buffer = this.buffer;
pos = tempPos + FIXED64_SIZE;
return (((buffer[tempPos] & 0xffL))
| ((buffer[tempPos + 1] & 0xffL) << 8)
| ((buffer[tempPos + 2] & 0xffL) << 16)
| ((buffer[tempPos + 3] & 0xffL) << 24)
| ((buffer[tempPos + 4] & 0xffL) << 32)
| ((buffer[tempPos + 5] & 0xffL) << 40)
| ((buffer[tempPos + 6] & 0xffL) << 48)
| ((buffer[tempPos + 7] & 0xffL) << 56));
}
@Override
public void enableAliasing(boolean enabled) {
this.enableAliasing = enabled;
}
@Override
public void resetSizeCounter() {
startPos = pos;
}
@Override
public int pushLimit(int byteLimit) throws InvalidProtocolBufferException {
if (byteLimit < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
byteLimit += getTotalBytesRead();
final int oldLimit = currentLimit;
if (byteLimit > oldLimit) {
throw InvalidProtocolBufferException.truncatedMessage();
}
currentLimit = byteLimit;
recomputeBufferSizeAfterLimit();
return oldLimit;
}
private void recomputeBufferSizeAfterLimit() {
limit += bufferSizeAfterLimit;
final int bufferEnd = limit - startPos;
if (bufferEnd > currentLimit) {
// Limit is in current buffer.
bufferSizeAfterLimit = bufferEnd - currentLimit;
limit -= bufferSizeAfterLimit;
} else {
bufferSizeAfterLimit = 0;
}
}
@Override
public void popLimit(final int oldLimit) {
currentLimit = oldLimit;
recomputeBufferSizeAfterLimit();
}
@Override
public int getBytesUntilLimit() {
if (currentLimit == Integer.MAX_VALUE) {
return -1;
}
return currentLimit - getTotalBytesRead();
}
@Override
public boolean isAtEnd() throws IOException {
return pos == limit;
}
@Override
public int getTotalBytesRead() {
return pos - startPos;
}
@Override
public byte readRawByte() throws IOException {
if (pos == limit) {
throw InvalidProtocolBufferException.truncatedMessage();
}
return buffer[pos++];
}
@Override
public byte[] readRawBytes(final int length) throws IOException {
if (length > 0 && length <= (limit - pos)) {
final int tempPos = pos;
pos += length;
return Arrays.copyOfRange(buffer, tempPos, pos);
}
if (length <= 0) {
if (length == 0) {
return Internal.EMPTY_BYTE_ARRAY;
} else {
throw InvalidProtocolBufferException.negativeSize();
}
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public void skipRawBytes(final int length) throws IOException {
if (length >= 0 && length <= (limit - pos)) {
// We have all the bytes we need already.
pos += length;
return;
}
if (length < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
}
/**
* A {@link CodedInputStream} implementation that uses a backing direct ByteBuffer as the input.
* Requires the use of {@code sun.misc.Unsafe} to perform fast reads on the buffer.
*/
private static final class UnsafeDirectNioDecoder extends CodedInputStream {
/** The direct buffer that is backing this stream. */
private final ByteBuffer buffer;
/**
* If {@code true}, indicates that the buffer is backing a {@link ByteString} and is therefore
* considered to be an immutable input source.
*/
private final boolean immutable;
/** The unsafe address of the content of {@link #buffer}. */
private final long address;
/** The unsafe address of the current read limit of the buffer. */
private long limit;
/** The unsafe address of the current read position of the buffer. */
private long pos;
/** The unsafe address of the starting read position. */
private long startPos;
/** The amount of available data in the buffer beyond {@link #limit}. */
private int bufferSizeAfterLimit;
/** The last tag that was read from this stream. */
private int lastTag;
/**
* If {@code true}, indicates that calls to read {@link ByteString} or {@code byte[]}
* may return slices of the underlying buffer, rather than copies.
*/
private boolean enableAliasing;
/** The absolute position of the end of the current message. */
private int currentLimit = Integer.MAX_VALUE;
static boolean isSupported() {
return UnsafeUtil.hasUnsafeByteBufferOperations();
}
private UnsafeDirectNioDecoder(ByteBuffer buffer, boolean immutable) {
this.buffer = buffer;
address = UnsafeUtil.addressOffset(buffer);
limit = address + buffer.limit();
pos = address + buffer.position();
startPos = pos;
this.immutable = immutable;
}
@Override
public int readTag() throws IOException {
if (isAtEnd()) {
lastTag = 0;
return 0;
}
lastTag = readRawVarint32();
if (WireFormat.getTagFieldNumber(lastTag) == 0) {
// If we actually read zero (or any tag number corresponding to field
// number zero), that's not a valid tag.
throw InvalidProtocolBufferException.invalidTag();
}
return lastTag;
}
@Override
public void checkLastTagWas(final int value) throws InvalidProtocolBufferException {
if (lastTag != value) {
throw InvalidProtocolBufferException.invalidEndTag();
}
}
@Override
public int getLastTag() {
return lastTag;
}
@Override
public boolean skipField(final int tag) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
skipRawVarint();
return true;
case WireFormat.WIRETYPE_FIXED64:
skipRawBytes(FIXED64_SIZE);
return true;
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
skipRawBytes(readRawVarint32());
return true;
case WireFormat.WIRETYPE_START_GROUP:
skipMessage();
checkLastTagWas(
WireFormat.makeTag(WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP));
return true;
case WireFormat.WIRETYPE_END_GROUP:
return false;
case WireFormat.WIRETYPE_FIXED32:
skipRawBytes(FIXED32_SIZE);
return true;
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public boolean skipField(final int tag, final CodedOutputStream output) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
{
long value = readInt64();
output.writeRawVarint32(tag);
output.writeUInt64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_FIXED64:
{
long value = readRawLittleEndian64();
output.writeRawVarint32(tag);
output.writeFixed64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
{
ByteString value = readBytes();
output.writeRawVarint32(tag);
output.writeBytesNoTag(value);
return true;
}
case WireFormat.WIRETYPE_START_GROUP:
{
output.writeRawVarint32(tag);
skipMessage(output);
int endtag =
WireFormat.makeTag(
WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP);
checkLastTagWas(endtag);
output.writeRawVarint32(endtag);
return true;
}
case WireFormat.WIRETYPE_END_GROUP:
{
return false;
}
case WireFormat.WIRETYPE_FIXED32:
{
int value = readRawLittleEndian32();
output.writeRawVarint32(tag);
output.writeFixed32NoTag(value);
return true;
}
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public void skipMessage() throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag)) {
return;
}
}
}
@Override
public void skipMessage(CodedOutputStream output) throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag, output)) {
return;
}
}
}
// -----------------------------------------------------------------
@Override
public double readDouble() throws IOException {
return Double.longBitsToDouble(readRawLittleEndian64());
}
@Override
public float readFloat() throws IOException {
return Float.intBitsToFloat(readRawLittleEndian32());
}
@Override
public long readUInt64() throws IOException {
return readRawVarint64();
}
@Override
public long readInt64() throws IOException {
return readRawVarint64();
}
@Override
public int readInt32() throws IOException {
return readRawVarint32();
}
@Override
public long readFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public boolean readBool() throws IOException {
return readRawVarint64() != 0;
}
@Override
public String readString() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= remaining()) {
// TODO(nathanmittler): Is there a way to avoid this copy?
// The same as readBytes' logic
byte[] bytes = new byte[size];
UnsafeUtil.copyMemory(pos, bytes, 0, size);
String result = new String(bytes, UTF_8);
pos += size;
return result;
}
if (size == 0) {
return "";
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public String readStringRequireUtf8() throws IOException {
final int size = readRawVarint32();
if (size >= 0 && size <= remaining()) {
// TODO(nathanmittler): Is there a way to avoid this copy?
// The same as readBytes' logic
byte[] bytes = new byte[size];
UnsafeUtil.copyMemory(pos, bytes, 0, size);
// TODO(martinrb): We could save a pass by validating while decoding.
if (!Utf8.isValidUtf8(bytes)) {
throw InvalidProtocolBufferException.invalidUtf8();
}
String result = new String(bytes, UTF_8);
pos += size;
return result;
}
if (size == 0) {
return "";
}
if (size <= 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public void readGroup(
final int fieldNumber,
final MessageLite.Builder builder,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
}
@Override
public T readGroup(
final int fieldNumber,
final Parser parser,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
return result;
}
@Deprecated
@Override
public void readUnknownGroup(final int fieldNumber, final MessageLite.Builder builder)
throws IOException {
readGroup(fieldNumber, builder, ExtensionRegistryLite.getEmptyRegistry());
}
@Override
public void readMessage(
final MessageLite.Builder builder, final ExtensionRegistryLite extensionRegistry)
throws IOException {
final int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
}
@Override
public T readMessage(
final Parser parser, final ExtensionRegistryLite extensionRegistry) throws IOException {
int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
return result;
}
@Override
public ByteString readBytes() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= remaining()) {
if (immutable && enableAliasing) {
final ByteBuffer result = slice(pos, pos + size);
pos += size;
return ByteString.wrap(result);
} else {
// Use UnsafeUtil to copy the memory to bytes instead of using ByteBuffer ways.
byte[] bytes = new byte[size];
UnsafeUtil.copyMemory(pos, bytes, 0, size);
pos += size;
return ByteString.wrap(bytes);
}
}
if (size == 0) {
return ByteString.EMPTY;
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public byte[] readByteArray() throws IOException {
return readRawBytes(readRawVarint32());
}
@Override
public ByteBuffer readByteBuffer() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= remaining()) {
// "Immutable" implies that buffer is backing a ByteString.
// Disallow slicing in this case to prevent the caller from modifying the contents
// of the ByteString.
if (!immutable && enableAliasing) {
final ByteBuffer result = slice(pos, pos + size);
pos += size;
return result;
} else {
// The same as readBytes' logic
byte[] bytes = new byte[size];
UnsafeUtil.copyMemory(pos, bytes, 0, size);
pos += size;
return ByteBuffer.wrap(bytes);
}
// TODO(nathanmittler): Investigate making the ByteBuffer be made read-only
}
if (size == 0) {
return EMPTY_BYTE_BUFFER;
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public int readUInt32() throws IOException {
return readRawVarint32();
}
@Override
public int readEnum() throws IOException {
return readRawVarint32();
}
@Override
public int readSFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public long readSFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readSInt32() throws IOException {
return decodeZigZag32(readRawVarint32());
}
@Override
public long readSInt64() throws IOException {
return decodeZigZag64(readRawVarint64());
}
// =================================================================
@Override
public int readRawVarint32() throws IOException {
// See implementation notes for readRawVarint64
fastpath:
{
long tempPos = pos;
if (limit == tempPos) {
break fastpath;
}
int x;
if ((x = UnsafeUtil.getByte(tempPos++)) >= 0) {
pos = tempPos;
return x;
} else if (limit - tempPos < 9) {
break fastpath;
} else if ((x ^= (UnsafeUtil.getByte(tempPos++) << 7)) < 0) {
x ^= (~0 << 7);
} else if ((x ^= (UnsafeUtil.getByte(tempPos++) << 14)) >= 0) {
x ^= (~0 << 7) ^ (~0 << 14);
} else if ((x ^= (UnsafeUtil.getByte(tempPos++) << 21)) < 0) {
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21);
} else {
int y = UnsafeUtil.getByte(tempPos++);
x ^= y << 28;
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21) ^ (~0 << 28);
if (y < 0
&& UnsafeUtil.getByte(tempPos++) < 0
&& UnsafeUtil.getByte(tempPos++) < 0
&& UnsafeUtil.getByte(tempPos++) < 0
&& UnsafeUtil.getByte(tempPos++) < 0
&& UnsafeUtil.getByte(tempPos++) < 0) {
break fastpath; // Will throw malformedVarint()
}
}
pos = tempPos;
return x;
}
return (int) readRawVarint64SlowPath();
}
private void skipRawVarint() throws IOException {
if (remaining() >= MAX_VARINT_SIZE) {
skipRawVarintFastPath();
} else {
skipRawVarintSlowPath();
}
}
private void skipRawVarintFastPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (UnsafeUtil.getByte(pos++) >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
private void skipRawVarintSlowPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (readRawByte() >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public long readRawVarint64() throws IOException {
// Implementation notes:
//
// Optimized for one-byte values, expected to be common.
// The particular code below was selected from various candidates
// empirically, by winning VarintBenchmark.
//
// Sign extension of (signed) Java bytes is usually a nuisance, but
// we exploit it here to more easily obtain the sign of bytes read.
// Instead of cleaning up the sign extension bits by masking eagerly,
// we delay until we find the final (positive) byte, when we clear all
// accumulated bits with one xor. We depend on javac to constant fold.
fastpath:
{
long tempPos = pos;
if (limit == tempPos) {
break fastpath;
}
long x;
int y;
if ((y = UnsafeUtil.getByte(tempPos++)) >= 0) {
pos = tempPos;
return y;
} else if (limit - tempPos < 9) {
break fastpath;
} else if ((y ^= (UnsafeUtil.getByte(tempPos++) << 7)) < 0) {
x = y ^ (~0 << 7);
} else if ((y ^= (UnsafeUtil.getByte(tempPos++) << 14)) >= 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14));
} else if ((y ^= (UnsafeUtil.getByte(tempPos++) << 21)) < 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14) ^ (~0 << 21));
} else if ((x = y ^ ((long) UnsafeUtil.getByte(tempPos++) << 28)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28);
} else if ((x ^= ((long) UnsafeUtil.getByte(tempPos++) << 35)) < 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35);
} else if ((x ^= ((long) UnsafeUtil.getByte(tempPos++) << 42)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35) ^ (~0L << 42);
} else if ((x ^= ((long) UnsafeUtil.getByte(tempPos++) << 49)) < 0L) {
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49);
} else {
x ^= ((long) UnsafeUtil.getByte(tempPos++) << 56);
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49)
^ (~0L << 56);
if (x < 0L) {
if (UnsafeUtil.getByte(tempPos++) < 0L) {
break fastpath; // Will throw malformedVarint()
}
}
}
pos = tempPos;
return x;
}
return readRawVarint64SlowPath();
}
@Override
long readRawVarint64SlowPath() throws IOException {
long result = 0;
for (int shift = 0; shift < 64; shift += 7) {
final byte b = readRawByte();
result |= (long) (b & 0x7F) << shift;
if ((b & 0x80) == 0) {
return result;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public int readRawLittleEndian32() throws IOException {
long tempPos = pos;
if (limit - tempPos < FIXED32_SIZE) {
throw InvalidProtocolBufferException.truncatedMessage();
}
pos = tempPos + FIXED32_SIZE;
return (((UnsafeUtil.getByte(tempPos) & 0xff))
| ((UnsafeUtil.getByte(tempPos + 1) & 0xff) << 8)
| ((UnsafeUtil.getByte(tempPos + 2) & 0xff) << 16)
| ((UnsafeUtil.getByte(tempPos + 3) & 0xff) << 24));
}
@Override
public long readRawLittleEndian64() throws IOException {
long tempPos = pos;
if (limit - tempPos < FIXED64_SIZE) {
throw InvalidProtocolBufferException.truncatedMessage();
}
pos = tempPos + FIXED64_SIZE;
return (((UnsafeUtil.getByte(tempPos) & 0xffL))
| ((UnsafeUtil.getByte(tempPos + 1) & 0xffL) << 8)
| ((UnsafeUtil.getByte(tempPos + 2) & 0xffL) << 16)
| ((UnsafeUtil.getByte(tempPos + 3) & 0xffL) << 24)
| ((UnsafeUtil.getByte(tempPos + 4) & 0xffL) << 32)
| ((UnsafeUtil.getByte(tempPos + 5) & 0xffL) << 40)
| ((UnsafeUtil.getByte(tempPos + 6) & 0xffL) << 48)
| ((UnsafeUtil.getByte(tempPos + 7) & 0xffL) << 56));
}
@Override
public void enableAliasing(boolean enabled) {
this.enableAliasing = enabled;
}
@Override
public void resetSizeCounter() {
startPos = pos;
}
@Override
public int pushLimit(int byteLimit) throws InvalidProtocolBufferException {
if (byteLimit < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
byteLimit += getTotalBytesRead();
final int oldLimit = currentLimit;
if (byteLimit > oldLimit) {
throw InvalidProtocolBufferException.truncatedMessage();
}
currentLimit = byteLimit;
recomputeBufferSizeAfterLimit();
return oldLimit;
}
@Override
public void popLimit(final int oldLimit) {
currentLimit = oldLimit;
recomputeBufferSizeAfterLimit();
}
@Override
public int getBytesUntilLimit() {
if (currentLimit == Integer.MAX_VALUE) {
return -1;
}
return currentLimit - getTotalBytesRead();
}
@Override
public boolean isAtEnd() throws IOException {
return pos == limit;
}
@Override
public int getTotalBytesRead() {
return (int) (pos - startPos);
}
@Override
public byte readRawByte() throws IOException {
if (pos == limit) {
throw InvalidProtocolBufferException.truncatedMessage();
}
return UnsafeUtil.getByte(pos++);
}
@Override
public byte[] readRawBytes(final int length) throws IOException {
if (length >= 0 && length <= remaining()) {
byte[] bytes = new byte[length];
slice(pos, pos + length).get(bytes);
pos += length;
return bytes;
}
if (length <= 0) {
if (length == 0) {
return EMPTY_BYTE_ARRAY;
} else {
throw InvalidProtocolBufferException.negativeSize();
}
}
throw InvalidProtocolBufferException.truncatedMessage();
}
@Override
public void skipRawBytes(final int length) throws IOException {
if (length >= 0 && length <= remaining()) {
// We have all the bytes we need already.
pos += length;
return;
}
if (length < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
throw InvalidProtocolBufferException.truncatedMessage();
}
private void recomputeBufferSizeAfterLimit() {
limit += bufferSizeAfterLimit;
final int bufferEnd = (int) (limit - startPos);
if (bufferEnd > currentLimit) {
// Limit is in current buffer.
bufferSizeAfterLimit = bufferEnd - currentLimit;
limit -= bufferSizeAfterLimit;
} else {
bufferSizeAfterLimit = 0;
}
}
private int remaining() {
return (int) (limit - pos);
}
private int bufferPos(long pos) {
return (int) (pos - address);
}
private ByteBuffer slice(long begin, long end) throws IOException {
int prevPos = buffer.position();
int prevLimit = buffer.limit();
try {
buffer.position(bufferPos(begin));
buffer.limit(bufferPos(end));
return buffer.slice();
} catch (IllegalArgumentException e) {
throw InvalidProtocolBufferException.truncatedMessage();
} finally {
buffer.position(prevPos);
buffer.limit(prevLimit);
}
}
}
/**
* Implementation of {@link CodedInputStream} that uses an {@link InputStream} as the data source.
*/
private static final class StreamDecoder extends CodedInputStream {
private final InputStream input;
private final byte[] buffer;
/** bufferSize represents how many bytes are currently filled in the buffer */
private int bufferSize;
private int bufferSizeAfterLimit;
private int pos;
private int lastTag;
/**
* The total number of bytes read before the current buffer. The total bytes read up to the
* current position can be computed as {@code totalBytesRetired + pos}. This value may be
* negative if reading started in the middle of the current buffer (e.g. if the constructor that
* takes a byte array and an offset was used).
*/
private int totalBytesRetired;
/** The absolute position of the end of the current message. */
private int currentLimit = Integer.MAX_VALUE;
private StreamDecoder(final InputStream input, int bufferSize) {
checkNotNull(input, "input");
this.input = input;
this.buffer = new byte[bufferSize];
this.bufferSize = 0;
pos = 0;
totalBytesRetired = 0;
}
@Override
public int readTag() throws IOException {
if (isAtEnd()) {
lastTag = 0;
return 0;
}
lastTag = readRawVarint32();
if (WireFormat.getTagFieldNumber(lastTag) == 0) {
// If we actually read zero (or any tag number corresponding to field
// number zero), that's not a valid tag.
throw InvalidProtocolBufferException.invalidTag();
}
return lastTag;
}
@Override
public void checkLastTagWas(final int value) throws InvalidProtocolBufferException {
if (lastTag != value) {
throw InvalidProtocolBufferException.invalidEndTag();
}
}
@Override
public int getLastTag() {
return lastTag;
}
@Override
public boolean skipField(final int tag) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
skipRawVarint();
return true;
case WireFormat.WIRETYPE_FIXED64:
skipRawBytes(FIXED64_SIZE);
return true;
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
skipRawBytes(readRawVarint32());
return true;
case WireFormat.WIRETYPE_START_GROUP:
skipMessage();
checkLastTagWas(
WireFormat.makeTag(WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP));
return true;
case WireFormat.WIRETYPE_END_GROUP:
return false;
case WireFormat.WIRETYPE_FIXED32:
skipRawBytes(FIXED32_SIZE);
return true;
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public boolean skipField(final int tag, final CodedOutputStream output) throws IOException {
switch (WireFormat.getTagWireType(tag)) {
case WireFormat.WIRETYPE_VARINT:
{
long value = readInt64();
output.writeRawVarint32(tag);
output.writeUInt64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_FIXED64:
{
long value = readRawLittleEndian64();
output.writeRawVarint32(tag);
output.writeFixed64NoTag(value);
return true;
}
case WireFormat.WIRETYPE_LENGTH_DELIMITED:
{
ByteString value = readBytes();
output.writeRawVarint32(tag);
output.writeBytesNoTag(value);
return true;
}
case WireFormat.WIRETYPE_START_GROUP:
{
output.writeRawVarint32(tag);
skipMessage(output);
int endtag =
WireFormat.makeTag(
WireFormat.getTagFieldNumber(tag), WireFormat.WIRETYPE_END_GROUP);
checkLastTagWas(endtag);
output.writeRawVarint32(endtag);
return true;
}
case WireFormat.WIRETYPE_END_GROUP:
{
return false;
}
case WireFormat.WIRETYPE_FIXED32:
{
int value = readRawLittleEndian32();
output.writeRawVarint32(tag);
output.writeFixed32NoTag(value);
return true;
}
default:
throw InvalidProtocolBufferException.invalidWireType();
}
}
@Override
public void skipMessage() throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag)) {
return;
}
}
}
@Override
public void skipMessage(CodedOutputStream output) throws IOException {
while (true) {
final int tag = readTag();
if (tag == 0 || !skipField(tag, output)) {
return;
}
}
}
/** Collects the bytes skipped and returns the data in a ByteBuffer. */
private class SkippedDataSink implements RefillCallback {
private int lastPos = pos;
private ByteArrayOutputStream byteArrayStream;
@Override
public void onRefill() {
if (byteArrayStream == null) {
byteArrayStream = new ByteArrayOutputStream();
}
byteArrayStream.write(buffer, lastPos, pos - lastPos);
lastPos = 0;
}
/** Gets skipped data in a ByteBuffer. This method should only be called once. */
ByteBuffer getSkippedData() {
if (byteArrayStream == null) {
return ByteBuffer.wrap(buffer, lastPos, pos - lastPos);
} else {
byteArrayStream.write(buffer, lastPos, pos);
return ByteBuffer.wrap(byteArrayStream.toByteArray());
}
}
}
// -----------------------------------------------------------------
@Override
public double readDouble() throws IOException {
return Double.longBitsToDouble(readRawLittleEndian64());
}
@Override
public float readFloat() throws IOException {
return Float.intBitsToFloat(readRawLittleEndian32());
}
@Override
public long readUInt64() throws IOException {
return readRawVarint64();
}
@Override
public long readInt64() throws IOException {
return readRawVarint64();
}
@Override
public int readInt32() throws IOException {
return readRawVarint32();
}
@Override
public long readFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public boolean readBool() throws IOException {
return readRawVarint64() != 0;
}
@Override
public String readString() throws IOException {
final int size = readRawVarint32();
if (size > 0 && size <= (bufferSize - pos)) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
final String result = new String(buffer, pos, size, UTF_8);
pos += size;
return result;
}
if (size == 0) {
return "";
}
if (size <= bufferSize) {
refillBuffer(size);
String result = new String(buffer, pos, size, UTF_8);
pos += size;
return result;
}
// Slow path: Build a byte array first then copy it.
return new String(readRawBytesSlowPath(size), UTF_8);
}
@Override
public String readStringRequireUtf8() throws IOException {
final int size = readRawVarint32();
final byte[] bytes;
final int oldPos = pos;
final int tempPos;
if (size <= (bufferSize - oldPos) && size > 0) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
bytes = buffer;
pos = oldPos + size;
tempPos = oldPos;
} else if (size == 0) {
return "";
} else if (size <= bufferSize) {
refillBuffer(size);
bytes = buffer;
tempPos = 0;
pos = tempPos + size;
} else {
// Slow path: Build a byte array first then copy it.
bytes = readRawBytesSlowPath(size);
tempPos = 0;
}
// TODO(martinrb): We could save a pass by validating while decoding.
if (!Utf8.isValidUtf8(bytes, tempPos, tempPos + size)) {
throw InvalidProtocolBufferException.invalidUtf8();
}
return new String(bytes, tempPos, size, UTF_8);
}
@Override
public void readGroup(
final int fieldNumber,
final MessageLite.Builder builder,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
}
@Override
public T readGroup(
final int fieldNumber,
final Parser parser,
final ExtensionRegistryLite extensionRegistry)
throws IOException {
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
--recursionDepth;
return result;
}
@Deprecated
@Override
public void readUnknownGroup(final int fieldNumber, final MessageLite.Builder builder)
throws IOException {
readGroup(fieldNumber, builder, ExtensionRegistryLite.getEmptyRegistry());
}
@Override
public void readMessage(
final MessageLite.Builder builder, final ExtensionRegistryLite extensionRegistry)
throws IOException {
final int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
builder.mergeFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
}
@Override
public T readMessage(
final Parser parser, final ExtensionRegistryLite extensionRegistry) throws IOException {
int length = readRawVarint32();
if (recursionDepth >= recursionLimit) {
throw InvalidProtocolBufferException.recursionLimitExceeded();
}
final int oldLimit = pushLimit(length);
++recursionDepth;
T result = parser.parsePartialFrom(this, extensionRegistry);
checkLastTagWas(0);
--recursionDepth;
popLimit(oldLimit);
return result;
}
@Override
public ByteString readBytes() throws IOException {
final int size = readRawVarint32();
if (size <= (bufferSize - pos) && size > 0) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
final ByteString result = ByteString.copyFrom(buffer, pos, size);
pos += size;
return result;
}
if (size == 0) {
return ByteString.EMPTY;
}
return readBytesSlowPath(size);
}
@Override
public byte[] readByteArray() throws IOException {
final int size = readRawVarint32();
if (size <= (bufferSize - pos) && size > 0) {
// Fast path: We already have the bytes in a contiguous buffer, so
// just copy directly from it.
final byte[] result = Arrays.copyOfRange(buffer, pos, pos + size);
pos += size;
return result;
} else {
// Slow path: Build a byte array first then copy it.
return readRawBytesSlowPath(size);
}
}
@Override
public ByteBuffer readByteBuffer() throws IOException {
final int size = readRawVarint32();
if (size <= (bufferSize - pos) && size > 0) {
// Fast path: We already have the bytes in a contiguous buffer.
ByteBuffer result = ByteBuffer.wrap(Arrays.copyOfRange(buffer, pos, pos + size));
pos += size;
return result;
}
if (size == 0) {
return Internal.EMPTY_BYTE_BUFFER;
}
// Slow path: Build a byte array first then copy it.
return ByteBuffer.wrap(readRawBytesSlowPath(size));
}
@Override
public int readUInt32() throws IOException {
return readRawVarint32();
}
@Override
public int readEnum() throws IOException {
return readRawVarint32();
}
@Override
public int readSFixed32() throws IOException {
return readRawLittleEndian32();
}
@Override
public long readSFixed64() throws IOException {
return readRawLittleEndian64();
}
@Override
public int readSInt32() throws IOException {
return decodeZigZag32(readRawVarint32());
}
@Override
public long readSInt64() throws IOException {
return decodeZigZag64(readRawVarint64());
}
// =================================================================
@Override
public int readRawVarint32() throws IOException {
// See implementation notes for readRawVarint64
fastpath:
{
int tempPos = pos;
if (bufferSize == tempPos) {
break fastpath;
}
final byte[] buffer = this.buffer;
int x;
if ((x = buffer[tempPos++]) >= 0) {
pos = tempPos;
return x;
} else if (bufferSize - tempPos < 9) {
break fastpath;
} else if ((x ^= (buffer[tempPos++] << 7)) < 0) {
x ^= (~0 << 7);
} else if ((x ^= (buffer[tempPos++] << 14)) >= 0) {
x ^= (~0 << 7) ^ (~0 << 14);
} else if ((x ^= (buffer[tempPos++] << 21)) < 0) {
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21);
} else {
int y = buffer[tempPos++];
x ^= y << 28;
x ^= (~0 << 7) ^ (~0 << 14) ^ (~0 << 21) ^ (~0 << 28);
if (y < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0
&& buffer[tempPos++] < 0) {
break fastpath; // Will throw malformedVarint()
}
}
pos = tempPos;
return x;
}
return (int) readRawVarint64SlowPath();
}
private void skipRawVarint() throws IOException {
if (bufferSize - pos >= MAX_VARINT_SIZE) {
skipRawVarintFastPath();
} else {
skipRawVarintSlowPath();
}
}
private void skipRawVarintFastPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (buffer[pos++] >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
private void skipRawVarintSlowPath() throws IOException {
for (int i = 0; i < MAX_VARINT_SIZE; i++) {
if (readRawByte() >= 0) {
return;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public long readRawVarint64() throws IOException {
// Implementation notes:
//
// Optimized for one-byte values, expected to be common.
// The particular code below was selected from various candidates
// empirically, by winning VarintBenchmark.
//
// Sign extension of (signed) Java bytes is usually a nuisance, but
// we exploit it here to more easily obtain the sign of bytes read.
// Instead of cleaning up the sign extension bits by masking eagerly,
// we delay until we find the final (positive) byte, when we clear all
// accumulated bits with one xor. We depend on javac to constant fold.
fastpath:
{
int tempPos = pos;
if (bufferSize == tempPos) {
break fastpath;
}
final byte[] buffer = this.buffer;
long x;
int y;
if ((y = buffer[tempPos++]) >= 0) {
pos = tempPos;
return y;
} else if (bufferSize - tempPos < 9) {
break fastpath;
} else if ((y ^= (buffer[tempPos++] << 7)) < 0) {
x = y ^ (~0 << 7);
} else if ((y ^= (buffer[tempPos++] << 14)) >= 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14));
} else if ((y ^= (buffer[tempPos++] << 21)) < 0) {
x = y ^ ((~0 << 7) ^ (~0 << 14) ^ (~0 << 21));
} else if ((x = y ^ ((long) buffer[tempPos++] << 28)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28);
} else if ((x ^= ((long) buffer[tempPos++] << 35)) < 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35);
} else if ((x ^= ((long) buffer[tempPos++] << 42)) >= 0L) {
x ^= (~0L << 7) ^ (~0L << 14) ^ (~0L << 21) ^ (~0L << 28) ^ (~0L << 35) ^ (~0L << 42);
} else if ((x ^= ((long) buffer[tempPos++] << 49)) < 0L) {
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49);
} else {
x ^= ((long) buffer[tempPos++] << 56);
x ^=
(~0L << 7)
^ (~0L << 14)
^ (~0L << 21)
^ (~0L << 28)
^ (~0L << 35)
^ (~0L << 42)
^ (~0L << 49)
^ (~0L << 56);
if (x < 0L) {
if (buffer[tempPos++] < 0L) {
break fastpath; // Will throw malformedVarint()
}
}
}
pos = tempPos;
return x;
}
return readRawVarint64SlowPath();
}
@Override
long readRawVarint64SlowPath() throws IOException {
long result = 0;
for (int shift = 0; shift < 64; shift += 7) {
final byte b = readRawByte();
result |= (long) (b & 0x7F) << shift;
if ((b & 0x80) == 0) {
return result;
}
}
throw InvalidProtocolBufferException.malformedVarint();
}
@Override
public int readRawLittleEndian32() throws IOException {
int tempPos = pos;
if (bufferSize - tempPos < FIXED32_SIZE) {
refillBuffer(FIXED32_SIZE);
tempPos = pos;
}
final byte[] buffer = this.buffer;
pos = tempPos + FIXED32_SIZE;
return (((buffer[tempPos] & 0xff))
| ((buffer[tempPos + 1] & 0xff) << 8)
| ((buffer[tempPos + 2] & 0xff) << 16)
| ((buffer[tempPos + 3] & 0xff) << 24));
}
@Override
public long readRawLittleEndian64() throws IOException {
int tempPos = pos;
if (bufferSize - tempPos < FIXED64_SIZE) {
refillBuffer(FIXED64_SIZE);
tempPos = pos;
}
final byte[] buffer = this.buffer;
pos = tempPos + FIXED64_SIZE;
return (((buffer[tempPos] & 0xffL))
| ((buffer[tempPos + 1] & 0xffL) << 8)
| ((buffer[tempPos + 2] & 0xffL) << 16)
| ((buffer[tempPos + 3] & 0xffL) << 24)
| ((buffer[tempPos + 4] & 0xffL) << 32)
| ((buffer[tempPos + 5] & 0xffL) << 40)
| ((buffer[tempPos + 6] & 0xffL) << 48)
| ((buffer[tempPos + 7] & 0xffL) << 56));
}
// -----------------------------------------------------------------
@Override
public void enableAliasing(boolean enabled) {
// TODO(nathanmittler): Ideally we should throw here. Do nothing for backward compatibility.
}
@Override
public void resetSizeCounter() {
totalBytesRetired = -pos;
}
@Override
public int pushLimit(int byteLimit) throws InvalidProtocolBufferException {
if (byteLimit < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
byteLimit += totalBytesRetired + pos;
final int oldLimit = currentLimit;
if (byteLimit > oldLimit) {
throw InvalidProtocolBufferException.truncatedMessage();
}
currentLimit = byteLimit;
recomputeBufferSizeAfterLimit();
return oldLimit;
}
private void recomputeBufferSizeAfterLimit() {
bufferSize += bufferSizeAfterLimit;
final int bufferEnd = totalBytesRetired + bufferSize;
if (bufferEnd > currentLimit) {
// Limit is in current buffer.
bufferSizeAfterLimit = bufferEnd - currentLimit;
bufferSize -= bufferSizeAfterLimit;
} else {
bufferSizeAfterLimit = 0;
}
}
@Override
public void popLimit(final int oldLimit) {
currentLimit = oldLimit;
recomputeBufferSizeAfterLimit();
}
@Override
public int getBytesUntilLimit() {
if (currentLimit == Integer.MAX_VALUE) {
return -1;
}
final int currentAbsolutePosition = totalBytesRetired + pos;
return currentLimit - currentAbsolutePosition;
}
@Override
public boolean isAtEnd() throws IOException {
return pos == bufferSize && !tryRefillBuffer(1);
}
@Override
public int getTotalBytesRead() {
return totalBytesRetired + pos;
}
private interface RefillCallback {
void onRefill();
}
private RefillCallback refillCallback = null;
/**
* Reads more bytes from the input, making at least {@code n} bytes available in the buffer.
* Caller must ensure that the requested space is not yet available, and that the requested
* space is less than BUFFER_SIZE.
*
* @throws InvalidProtocolBufferException The end of the stream or the current limit was
* reached.
*/
private void refillBuffer(int n) throws IOException {
if (!tryRefillBuffer(n)) {
// We have to distinguish the exception between sizeLimitExceeded and truncatedMessage. So
// we just throw an sizeLimitExceeded exception here if it exceeds the sizeLimit
if (n > sizeLimit - totalBytesRetired - pos) {
throw InvalidProtocolBufferException.sizeLimitExceeded();
} else {
throw InvalidProtocolBufferException.truncatedMessage();
}
}
}
/**
* Tries to read more bytes from the input, making at least {@code n} bytes available in the
* buffer. Caller must ensure that the requested space is not yet available, and that the
* requested space is less than BUFFER_SIZE.
*
* @return {@code true} If the bytes could be made available; {@code false} 1. Current at the
* end of the stream 2. The current limit was reached 3. The total size limit was reached
*/
private boolean tryRefillBuffer(int n) throws IOException {
if (pos + n <= bufferSize) {
throw new IllegalStateException(
"refillBuffer() called when " + n + " bytes were already available in buffer");
}
// Check whether the size of total message needs to read is bigger than the size limit.
// We shouldn't throw an exception here as isAtEnd() function needs to get this function's
// return as the result.
if (n > sizeLimit - totalBytesRetired - pos) {
return false;
}
// Shouldn't throw the exception here either.
if (totalBytesRetired + pos + n > currentLimit) {
// Oops, we hit a limit.
return false;
}
if (refillCallback != null) {
refillCallback.onRefill();
}
int tempPos = pos;
if (tempPos > 0) {
if (bufferSize > tempPos) {
System.arraycopy(buffer, tempPos, buffer, 0, bufferSize - tempPos);
}
totalBytesRetired += tempPos;
bufferSize -= tempPos;
pos = 0;
}
// Here we should refill the buffer as many bytes as possible.
int bytesRead =
input.read(
buffer,
bufferSize,
Math.min(
// the size of allocated but unused bytes in the buffer
buffer.length - bufferSize,
// do not exceed the total bytes limit
sizeLimit - totalBytesRetired - bufferSize));
if (bytesRead == 0 || bytesRead < -1 || bytesRead > buffer.length) {
throw new IllegalStateException(
"InputStream#read(byte[]) returned invalid result: "
+ bytesRead
+ "\nThe InputStream implementation is buggy.");
}
if (bytesRead > 0) {
bufferSize += bytesRead;
recomputeBufferSizeAfterLimit();
return (bufferSize >= n) ? true : tryRefillBuffer(n);
}
return false;
}
@Override
public byte readRawByte() throws IOException {
if (pos == bufferSize) {
refillBuffer(1);
}
return buffer[pos++];
}
@Override
public byte[] readRawBytes(final int size) throws IOException {
final int tempPos = pos;
if (size <= (bufferSize - tempPos) && size > 0) {
pos = tempPos + size;
return Arrays.copyOfRange(buffer, tempPos, tempPos + size);
} else {
return readRawBytesSlowPath(size);
}
}
/**
* Exactly like readRawBytes, but caller must have already checked the fast path: (size <=
* (bufferSize - pos) && size > 0)
*/
private byte[] readRawBytesSlowPath(final int size) throws IOException {
// Attempt to read the data in one byte array when it's safe to do.
byte[] result = readRawBytesSlowPathOneChunk(size);
if (result != null) {
return result;
}
final int originalBufferPos = pos;
final int bufferedBytes = bufferSize - pos;
// Mark the current buffer consumed.
totalBytesRetired += bufferSize;
pos = 0;
bufferSize = 0;
// Determine the number of bytes we need to read from the input stream.
int sizeLeft = size - bufferedBytes;
// The size is very large. For security reasons we read them in small
// chunks.
List chunks = readRawBytesSlowPathRemainingChunks(sizeLeft);
// OK, got everything. Now concatenate it all into one buffer.
final byte[] bytes = new byte[size];
// Start by copying the leftover bytes from this.buffer.
System.arraycopy(buffer, originalBufferPos, bytes, 0, bufferedBytes);
// And now all the chunks.
int tempPos = bufferedBytes;
for (final byte[] chunk : chunks) {
System.arraycopy(chunk, 0, bytes, tempPos, chunk.length);
tempPos += chunk.length;
}
// Done.
return bytes;
}
/**
* Attempts to read the data in one byte array when it's safe to do. Returns null if the size to
* read is too large and needs to be allocated in smaller chunks for security reasons.
*/
private byte[] readRawBytesSlowPathOneChunk(final int size) throws IOException {
if (size == 0) {
return Internal.EMPTY_BYTE_ARRAY;
}
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
// Integer-overflow-conscious check that the message size so far has not exceeded sizeLimit.
int currentMessageSize = totalBytesRetired + pos + size;
if (currentMessageSize - sizeLimit > 0) {
throw InvalidProtocolBufferException.sizeLimitExceeded();
}
// Verify that the message size so far has not exceeded currentLimit.
if (currentMessageSize > currentLimit) {
// Read to the end of the stream anyway.
skipRawBytes(currentLimit - totalBytesRetired - pos);
throw InvalidProtocolBufferException.truncatedMessage();
}
final int bufferedBytes = bufferSize - pos;
// Determine the number of bytes we need to read from the input stream.
int sizeLeft = size - bufferedBytes;
// TODO(nathanmittler): Consider using a value larger than DEFAULT_BUFFER_SIZE.
if (sizeLeft < DEFAULT_BUFFER_SIZE || sizeLeft <= input.available()) {
// Either the bytes we need are known to be available, or the required buffer is
// within an allowed threshold - go ahead and allocate the buffer now.
final byte[] bytes = new byte[size];
// Copy all of the buffered bytes to the result buffer.
System.arraycopy(buffer, pos, bytes, 0, bufferedBytes);
totalBytesRetired += bufferSize;
pos = 0;
bufferSize = 0;
// Fill the remaining bytes from the input stream.
int tempPos = bufferedBytes;
while (tempPos < bytes.length) {
int n = input.read(bytes, tempPos, size - tempPos);
if (n == -1) {
throw InvalidProtocolBufferException.truncatedMessage();
}
totalBytesRetired += n;
tempPos += n;
}
return bytes;
}
return null;
}
/** Reads the remaining data in small chunks from the input stream. */
private List readRawBytesSlowPathRemainingChunks(int sizeLeft) throws IOException {
// The size is very large. For security reasons, we can't allocate the
// entire byte array yet. The size comes directly from the input, so a
// maliciously-crafted message could provide a bogus very large size in
// order to trick the app into allocating a lot of memory. We avoid this
// by allocating and reading only a small chunk at a time, so that the
// malicious message must actually *be* extremely large to cause
// problems. Meanwhile, we limit the allowed size of a message elsewhere.
final List chunks = new ArrayList();
while (sizeLeft > 0) {
// TODO(nathanmittler): Consider using a value larger than DEFAULT_BUFFER_SIZE.
final byte[] chunk = new byte[Math.min(sizeLeft, DEFAULT_BUFFER_SIZE)];
int tempPos = 0;
while (tempPos < chunk.length) {
final int n = input.read(chunk, tempPos, chunk.length - tempPos);
if (n == -1) {
throw InvalidProtocolBufferException.truncatedMessage();
}
totalBytesRetired += n;
tempPos += n;
}
sizeLeft -= chunk.length;
chunks.add(chunk);
}
return chunks;
}
/**
* Like readBytes, but caller must have already checked the fast path: (size <= (bufferSize -
* pos) && size > 0 || size == 0)
*/
private ByteString readBytesSlowPath(final int size) throws IOException {
final byte[] result = readRawBytesSlowPathOneChunk(size);
if (result != null) {
return ByteString.wrap(result);
}
final int originalBufferPos = pos;
final int bufferedBytes = bufferSize - pos;
// Mark the current buffer consumed.
totalBytesRetired += bufferSize;
pos = 0;
bufferSize = 0;
// Determine the number of bytes we need to read from the input stream.
int sizeLeft = size - bufferedBytes;
// The size is very large. For security reasons we read them in small
// chunks.
List chunks = readRawBytesSlowPathRemainingChunks(sizeLeft);
// Wrap the byte arrays into a single ByteString.
List byteStrings = new ArrayList(1 + chunks.size());
byteStrings.add(ByteString.copyFrom(buffer, originalBufferPos, bufferedBytes));
for (byte[] chunk : chunks) {
byteStrings.add(ByteString.wrap(chunk));
}
return ByteString.copyFrom(byteStrings);
}
@Override
public void skipRawBytes(final int size) throws IOException {
if (size <= (bufferSize - pos) && size >= 0) {
// We have all the bytes we need already.
pos += size;
} else {
skipRawBytesSlowPath(size);
}
}
/**
* Exactly like skipRawBytes, but caller must have already checked the fast path: (size <=
* (bufferSize - pos) && size >= 0)
*/
private void skipRawBytesSlowPath(final int size) throws IOException {
if (size < 0) {
throw InvalidProtocolBufferException.negativeSize();
}
if (totalBytesRetired + pos + size > currentLimit) {
// Read to the end of the stream anyway.
skipRawBytes(currentLimit - totalBytesRetired - pos);
// Then fail.
throw InvalidProtocolBufferException.truncatedMessage();
}
// Skipping more bytes than are in the buffer. First skip what we have.
int tempPos = bufferSize - pos;
pos = bufferSize;
// Keep refilling the buffer until we get to the point we wanted to skip to.
// This has the side effect of ensuring the limits are updated correctly.
refillBuffer(1);
while (size - tempPos > bufferSize) {
tempPos += bufferSize;
pos = bufferSize;
refillBuffer(1);
}
pos = size - tempPos;
}
}
}