All Downloads are FREE. Search and download functionalities are using the official Maven repository.

datafu.hourglass.mapreduce.PartitioningMapper Maven / Gradle / Ivy

The newest version!
/**
* Copyright 2013 LinkedIn, Inc
* 
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
* 
* http://www.apache.org/licenses/LICENSE-2.0
* 
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/

package datafu.hourglass.mapreduce;

import java.io.IOException;
import java.io.Serializable;

import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroValue;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.mapreduce.MapContext;
import org.apache.hadoop.mapreduce.TaskInputOutputContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;


import datafu.hourglass.fs.PathUtils;
import datafu.hourglass.model.KeyValueCollector;
import datafu.hourglass.model.Mapper;
import datafu.hourglass.schemas.PartitionPreservingSchemas;

/**
 * The mapper used by {@link datafu.hourglass.jobs.AbstractPartitionPreservingIncrementalJob} and its derived classes.
 * 
 * 

* An implementation of {@link datafu.hourglass.model.Mapper} is used for the * map operation, which produces key and intermediate value pairs from the input. * The input to the mapper is assumed to be partitioned by day. * Each key produced by {@link datafu.hourglass.model.Mapper} is tagged with the time for the partition * that the input came from. This enables the combiner and reducer to preserve the partitions. *

* * @author "Matthew Hayes" * */ public class PartitioningMapper extends ObjectMapper implements Serializable { private transient MapCollector _mapCollector; private transient FileSplit _lastSplit; private transient long _lastTime; private Mapper _mapper; private PartitionPreservingSchemas _schemas; @SuppressWarnings("unchecked") @Override public void map(Object inputObj, MapContext context) throws IOException, InterruptedException { long time; if (_lastSplit == context.getInputSplit()) { time = _lastTime; } else { _lastSplit = (FileSplit)context.getInputSplit(); time = PathUtils.getDateForNestedDatedPath((_lastSplit).getPath().getParent()).getTime(); _lastTime = time; } getMapCollector().setContext(context); // Set the time, representing the time range this data was derived from. // The key is tagged with this time. getMapCollector().setTime(time); try { AvroKey input = (AvroKey)inputObj; getMapper().map(input.datum(),getMapCollector()); } catch (InterruptedException e) { throw new IOException(e); } } /** * Gets the mapper. * * @return mapper */ public Mapper getMapper() { return _mapper; } /** * Sets the mapper. * * @param mapper */ public void setMapper(Mapper mapper) { _mapper = mapper; } /** * Sets the Avro schemas. * * @param schemas */ public void setSchemas(PartitionPreservingSchemas schemas) { _schemas = schemas; } /** * Gets the Avro schemas. * * @return schemas */ public PartitionPreservingSchemas getSchemas() { return _schemas; } @Override public void setContext( TaskInputOutputContext context) { super.setContext(context); if (_mapper instanceof Configurable) { ((Configurable)_mapper).setConf(context.getConfiguration()); } } private MapCollector getMapCollector() { if (_mapCollector == null) { _mapCollector = new MapCollector(getSchemas()); } return _mapCollector; } /** * A {@see KeyValueCollector} that writes to {@see MapContext} and tags each mapped key with the time for the partition * it was derived from. This keeps the data partitioned so that the reducer may process each partition independently. * * @author "Matthew Hayes" * */ private class MapCollector implements KeyValueCollector { private MapContext context; private GenericRecord wrappedKey; public MapCollector(PartitionPreservingSchemas schemas) { this.wrappedKey = new GenericData.Record(schemas.getMapOutputKeySchema()); } public void setContext(MapContext context) { this.context = context; } public void setTime(long time) { this.wrappedKey.put("time", time); } public void collect(GenericRecord key, GenericRecord value) throws IOException, InterruptedException { wrappedKey.put("value", key); context.write(new AvroKey(wrappedKey),new AvroValue(value)); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy