All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.iceberg.parquet.ParquetWriter Maven / Gradle / Ivy

There is a newer version: 1.0.0.8
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.iceberg.parquet;

import java.io.Closeable;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.function.Function;
import org.apache.hadoop.conf.Configuration;
import org.apache.iceberg.Metrics;
import org.apache.iceberg.MetricsConfig;
import org.apache.iceberg.Schema;
import org.apache.iceberg.common.DynConstructors;
import org.apache.iceberg.common.DynMethods;
import org.apache.iceberg.exceptions.RuntimeIOException;
import org.apache.iceberg.io.FileAppender;
import org.apache.iceberg.io.OutputFile;
import org.apache.iceberg.relocated.com.google.common.base.Preconditions;
import org.apache.iceberg.relocated.com.google.common.collect.ImmutableMap;
import org.apache.parquet.bytes.ByteBufferAllocator;
import org.apache.parquet.column.ColumnWriteStore;
import org.apache.parquet.column.ParquetProperties;
import org.apache.parquet.column.page.PageWriteStore;
import org.apache.parquet.hadoop.CodecFactory;
import org.apache.parquet.hadoop.ParquetFileWriter;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.apache.parquet.schema.MessageType;

class ParquetWriter implements FileAppender, Closeable {

  private static DynConstructors.Ctor pageStoreCtorParquet = DynConstructors
          .builder(PageWriteStore.class)
          .hiddenImpl("org.apache.parquet.hadoop.ColumnChunkPageWriteStore",
              CodecFactory.BytesCompressor.class,
              MessageType.class,
              ByteBufferAllocator.class,
              int.class)
          .build();

  private static final DynMethods.UnboundMethod flushToWriter = DynMethods
      .builder("flushToFileWriter")
      .hiddenImpl("org.apache.parquet.hadoop.ColumnChunkPageWriteStore", ParquetFileWriter.class)
      .build();

  private final long targetRowGroupSize;
  private final Map metadata;
  private final ParquetProperties props;
  private final CodecFactory.BytesCompressor compressor;
  private final MessageType parquetSchema;
  private final ParquetValueWriter model;
  private final ParquetFileWriter writer;
  private final MetricsConfig metricsConfig;
  private final int columnIndexTruncateLength;

  private DynMethods.BoundMethod flushPageStoreToWriter;
  private ColumnWriteStore writeStore;
  private long nextRowGroupSize = 0;
  private long recordCount = 0;
  private long nextCheckRecordCount = 10;
  private boolean closed;

  private static final String COLUMN_INDEX_TRUNCATE_LENGTH = "parquet.columnindex.truncate.length";
  private static final int DEFAULT_COLUMN_INDEX_TRUNCATE_LENGTH = 64;

  @SuppressWarnings("unchecked")
  ParquetWriter(Configuration conf, OutputFile output, Schema schema, long rowGroupSize,
                Map metadata,
                Function> createWriterFunc,
                CompressionCodecName codec,
                ParquetProperties properties,
                MetricsConfig metricsConfig,
                ParquetFileWriter.Mode writeMode) {
    this.targetRowGroupSize = rowGroupSize;
    this.props = properties;
    this.metadata = ImmutableMap.copyOf(metadata);
    this.compressor = new CodecFactory(conf, props.getPageSizeThreshold()).getCompressor(codec);
    this.parquetSchema = ParquetSchemaUtil.convert(schema, "table");
    this.model = (ParquetValueWriter) createWriterFunc.apply(parquetSchema);
    this.metricsConfig = metricsConfig;
    this.columnIndexTruncateLength = conf.getInt(COLUMN_INDEX_TRUNCATE_LENGTH, DEFAULT_COLUMN_INDEX_TRUNCATE_LENGTH);

    try {
      this.writer = new ParquetFileWriter(ParquetIO.file(output, conf), parquetSchema,
         writeMode, rowGroupSize, 0);
    } catch (IOException e) {
      throw new RuntimeIOException(e, "Failed to create Parquet file");
    }

    try {
      writer.start();
    } catch (IOException e) {
      throw new RuntimeIOException(e, "Failed to start Parquet file writer");
    }

    startRowGroup();
  }

  @Override
  public void add(T value) {
    recordCount += 1;
    model.write(0, value);
    writeStore.endRecord();
    checkSize();
  }

  @Override
  public Metrics metrics() {
    return ParquetUtil.footerMetrics(writer.getFooter(), model.metrics(), metricsConfig);
  }

  /**
   * Returns the approximate length of the output file produced by this writer.
   * 

* Prior to calling {@link ParquetWriter#close}, the result is approximate. After calling close, the length is * exact. * * @return the approximate length of the output file produced by this writer or the exact length if this writer is * closed. */ @Override public long length() { try { if (closed) { return writer.getPos(); } else { return writer.getPos() + (writeStore.isColumnFlushNeeded() ? writeStore.getBufferedSize() : 0); } } catch (IOException e) { throw new RuntimeIOException(e, "Failed to get file length"); } } @Override public List splitOffsets() { return ParquetUtil.getSplitOffsets(writer.getFooter()); } private void checkSize() { if (recordCount >= nextCheckRecordCount) { long bufferedSize = writeStore.getBufferedSize(); double avgRecordSize = ((double) bufferedSize) / recordCount; if (bufferedSize > (nextRowGroupSize - 2 * avgRecordSize)) { flushRowGroup(false); } else { long remainingSpace = nextRowGroupSize - bufferedSize; long remainingRecords = (long) (remainingSpace / avgRecordSize); this.nextCheckRecordCount = recordCount + Math.min(Math.max(remainingRecords / 2, 100), 10000); } } } private void flushRowGroup(boolean finished) { try { if (recordCount > 0) { writer.startBlock(recordCount); writeStore.flush(); flushPageStoreToWriter.invoke(writer); writer.endBlock(); if (!finished) { startRowGroup(); } } } catch (IOException e) { throw new RuntimeIOException(e, "Failed to flush row group"); } } private void startRowGroup() { Preconditions.checkState(!closed, "Writer is closed"); try { this.nextRowGroupSize = Math.min(writer.getNextRowGroupSize(), targetRowGroupSize); } catch (IOException e) { throw new RuntimeIOException(e); } this.nextCheckRecordCount = Math.min(Math.max(recordCount / 2, 100), 10000); this.recordCount = 0; PageWriteStore pageStore = pageStoreCtorParquet.newInstance( compressor, parquetSchema, props.getAllocator(), this.columnIndexTruncateLength); this.flushPageStoreToWriter = flushToWriter.bind(pageStore); this.writeStore = props.newColumnWriteStore(parquetSchema, pageStore); model.setColumnStore(writeStore); } @Override public void close() throws IOException { if (!closed) { this.closed = true; flushRowGroup(true); writeStore.close(); writer.end(metadata); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy