org.spongycastle.math.ec.LongArray Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of core Show documentation
Show all versions of core Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle
intended for the Android platform. Android unfortunately ships with a stripped-down version of
Bouncy Castle, which prevents easy upgrades - Spongy Castle overcomes this and provides a full,
up-to-date version of the Bouncy Castle cryptographic libs.
package org.spongycastle.math.ec;
import org.spongycastle.util.Arrays;
import java.math.BigInteger;
class LongArray implements Cloneable
{
// private static long DEINTERLEAVE_MASK = 0x5555555555555555L;
/*
* This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits.
* In a binary field, this operation is the same as squaring an 8 bit number.
*
* NOTE: All entries are positive so sign-extension is not an issue.
*/
private static final short[] INTERLEAVE2_TABLE = new short[]
{
0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015,
0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055,
0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115,
0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155,
0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415,
0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455,
0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515,
0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555,
0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015,
0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055,
0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115,
0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155,
0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415,
0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455,
0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515,
0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555,
0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015,
0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055,
0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115,
0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155,
0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415,
0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455,
0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515,
0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555,
0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015,
0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055,
0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115,
0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155,
0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415,
0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455,
0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515,
0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555
};
/*
* This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits.
*/
private static final int[] INTERLEAVE3_TABLE = new int[]
{
0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049,
0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249,
0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049,
0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249,
0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049,
0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249,
0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049,
0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249,
0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049,
0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249,
0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049,
0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249,
0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049,
0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249,
0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049,
0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249
};
/*
* This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits.
*/
private static final int[] INTERLEAVE4_TABLE = new int[]
{
0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111,
0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111,
0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111,
0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111,
0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111,
0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111,
0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111,
0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111,
0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111,
0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111,
0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111,
0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111,
0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111,
0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111,
0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111,
0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111,
0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111,
0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111,
0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111,
0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111,
0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111,
0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111,
0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111,
0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111,
0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111,
0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111,
0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111,
0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111,
0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111,
0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111,
0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111,
0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111
};
/*
* This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits.
*/
private static final int[] INTERLEAVE5_TABLE = new int[] {
0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421,
0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421,
0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421,
0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421,
0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421,
0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421,
0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421,
0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421,
0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421,
0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421,
0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421,
0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421,
0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421,
0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421,
0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421,
0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421
};
/*
* This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits.
*/
private static final long[] INTERLEAVE7_TABLE = new long[]
{
0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L,
0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L,
0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L,
0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L,
0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L,
0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L,
0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L,
0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L,
0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L,
0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L,
0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L,
0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L,
0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L,
0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L,
0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L,
0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L,
0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L,
0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L,
0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L,
0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L,
0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L,
0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L,
0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L,
0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L,
0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L,
0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L,
0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L,
0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L,
0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L,
0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L,
0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L,
0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L,
0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L,
0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L,
0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L,
0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L,
0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L,
0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L,
0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L,
0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L,
0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L,
0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L,
0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L,
0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L,
0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L,
0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L,
0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L,
0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L,
0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L,
0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L,
0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L,
0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L,
0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L,
0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L,
0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L,
0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L,
0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L,
0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L,
0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L,
0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L,
0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L,
0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L,
0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L,
0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L,
0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L,
0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L,
0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L,
0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L,
0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L,
0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L,
0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L,
0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L,
0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L,
0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L,
0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L,
0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L,
0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L,
0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L,
0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L,
0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L,
0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L,
0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L,
0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L,
0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L,
0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L,
0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L,
0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L,
0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L,
0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L,
0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L,
0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L,
0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L,
0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L,
0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L,
0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L,
0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L,
0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L,
0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L,
0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L,
0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L,
0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L,
0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L,
0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L,
0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L,
0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L,
0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L,
0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L,
0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L,
0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L,
0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L,
0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L,
0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L,
0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L,
0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L,
0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L,
0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L,
0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L,
0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L,
0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L,
0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L,
0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L,
0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L,
0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L,
0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L,
0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L,
0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L,
0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L,
0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L
};
// For toString(); must have length 64
private static final String ZEROES = "0000000000000000000000000000000000000000000000000000000000000000";
final static byte[] bitLengths =
{
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
};
// TODO make m fixed for the LongArray, and hence compute T once and for all
private long[] m_ints;
public LongArray(int intLen)
{
m_ints = new long[intLen];
}
public LongArray(long[] ints)
{
m_ints = ints;
}
public LongArray(long[] ints, int off, int len)
{
if (off == 0 && len == ints.length)
{
m_ints = ints;
}
else
{
m_ints = new long[len];
System.arraycopy(ints, off, m_ints, 0, len);
}
}
public LongArray(BigInteger bigInt)
{
if (bigInt == null || bigInt.signum() < 0)
{
throw new IllegalArgumentException("invalid F2m field value");
}
if (bigInt.signum() == 0)
{
m_ints = new long[] { 0L };
return;
}
byte[] barr = bigInt.toByteArray();
int barrLen = barr.length;
int barrStart = 0;
if (barr[0] == 0)
{
// First byte is 0 to enforce highest (=sign) bit is zero.
// In this case ignore barr[0].
barrLen--;
barrStart = 1;
}
int intLen = (barrLen + 7) / 8;
m_ints = new long[intLen];
int iarrJ = intLen - 1;
int rem = barrLen % 8 + barrStart;
long temp = 0;
int barrI = barrStart;
if (barrStart < rem)
{
for (; barrI < rem; barrI++)
{
temp <<= 8;
int barrBarrI = barr[barrI] & 0xFF;
temp |= barrBarrI;
}
m_ints[iarrJ--] = temp;
}
for (; iarrJ >= 0; iarrJ--)
{
temp = 0;
for (int i = 0; i < 8; i++)
{
temp <<= 8;
int barrBarrI = barr[barrI++] & 0xFF;
temp |= barrBarrI;
}
m_ints[iarrJ] = temp;
}
}
public boolean isOne()
{
long[] a = m_ints;
if (a[0] != 1L)
{
return false;
}
for (int i = 1; i < a.length; ++i)
{
if (a[i] != 0L)
{
return false;
}
}
return true;
}
public boolean isZero()
{
long[] a = m_ints;
for (int i = 0; i < a.length; ++i)
{
if (a[i] != 0L)
{
return false;
}
}
return true;
}
public int getUsedLength()
{
return getUsedLengthFrom(m_ints.length);
}
public int getUsedLengthFrom(int from)
{
long[] a = m_ints;
from = Math.min(from, a.length);
if (from < 1)
{
return 0;
}
// Check if first element will act as sentinel
if (a[0] != 0)
{
while (a[--from] == 0)
{
}
return from + 1;
}
do
{
if (a[--from] != 0)
{
return from + 1;
}
}
while (from > 0);
return 0;
}
public int degree()
{
int i = m_ints.length;
long w;
do
{
if (i == 0)
{
return 0;
}
w = m_ints[--i];
}
while (w == 0);
return (i << 6) + bitLength(w);
}
private int degreeFrom(int limit)
{
int i = (limit + 62) >>> 6;
long w;
do
{
if (i == 0)
{
return 0;
}
w = m_ints[--i];
}
while (w == 0);
return (i << 6) + bitLength(w);
}
// private int lowestCoefficient()
// {
// for (int i = 0; i < m_ints.length; ++i)
// {
// long mi = m_ints[i];
// if (mi != 0)
// {
// int j = 0;
// while ((mi & 0xFFL) == 0)
// {
// j += 8;
// mi >>>= 8;
// }
// while ((mi & 1L) == 0)
// {
// ++j;
// mi >>>= 1;
// }
// return (i << 6) + j;
// }
// }
// return -1;
// }
private static int bitLength(long w)
{
int u = (int)(w >>> 32), b;
if (u == 0)
{
u = (int)w;
b = 0;
}
else
{
b = 32;
}
int t = u >>> 16, k;
if (t == 0)
{
t = u >>> 8;
k = (t == 0) ? bitLengths[u] : 8 + bitLengths[t];
}
else
{
int v = t >>> 8;
k = (v == 0) ? 16 + bitLengths[t] : 24 + bitLengths[v];
}
return b + k;
}
private long[] resizedInts(int newLen)
{
long[] newInts = new long[newLen];
System.arraycopy(m_ints, 0, newInts, 0, Math.min(m_ints.length, newLen));
return newInts;
}
public BigInteger toBigInteger()
{
int usedLen = getUsedLength();
if (usedLen == 0)
{
return ECConstants.ZERO;
}
long highestInt = m_ints[usedLen - 1];
byte[] temp = new byte[8];
int barrI = 0;
boolean trailingZeroBytesDone = false;
for (int j = 7; j >= 0; j--)
{
byte thisByte = (byte)(highestInt >>> (8 * j));
if (trailingZeroBytesDone || (thisByte != 0))
{
trailingZeroBytesDone = true;
temp[barrI++] = thisByte;
}
}
int barrLen = 8 * (usedLen - 1) + barrI;
byte[] barr = new byte[barrLen];
for (int j = 0; j < barrI; j++)
{
barr[j] = temp[j];
}
// Highest value int is done now
for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--)
{
long mi = m_ints[iarrJ];
for (int j = 7; j >= 0; j--)
{
barr[barrI++] = (byte)(mi >>> (8 * j));
}
}
return new BigInteger(1, barr);
}
// private static long shiftUp(long[] x, int xOff, int count)
// {
// long prev = 0;
// for (int i = 0; i < count; ++i)
// {
// long next = x[xOff + i];
// x[xOff + i] = (next << 1) | prev;
// prev = next >>> 63;
// }
// return prev;
// }
private static long shiftUp(long[] x, int xOff, int count, int shift)
{
int shiftInv = 64 - shift;
long prev = 0;
for (int i = 0; i < count; ++i)
{
long next = x[xOff + i];
x[xOff + i] = (next << shift) | prev;
prev = next >>> shiftInv;
}
return prev;
}
private static long shiftUp(long[] x, int xOff, long[] z, int zOff, int count, int shift)
{
int shiftInv = 64 - shift;
long prev = 0;
for (int i = 0; i < count; ++i)
{
long next = x[xOff + i];
z[zOff + i] = (next << shift) | prev;
prev = next >>> shiftInv;
}
return prev;
}
public LongArray addOne()
{
if (m_ints.length == 0)
{
return new LongArray(new long[]{ 1L });
}
int resultLen = Math.max(1, getUsedLength());
long[] ints = resizedInts(resultLen);
ints[0] ^= 1L;
return new LongArray(ints);
}
// private void addShiftedByBits(LongArray other, int bits)
// {
// int words = bits >>> 6;
// int shift = bits & 0x3F;
//
// if (shift == 0)
// {
// addShiftedByWords(other, words);
// return;
// }
//
// int otherUsedLen = other.getUsedLength();
// if (otherUsedLen == 0)
// {
// return;
// }
//
// int minLen = otherUsedLen + words + 1;
// if (minLen > m_ints.length)
// {
// m_ints = resizedInts(minLen);
// }
//
// long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift);
// m_ints[otherUsedLen + words] ^= carry;
// }
private void addShiftedByBitsSafe(LongArray other, int otherDegree, int bits)
{
int otherLen = (otherDegree + 63) >>> 6;
int words = bits >>> 6;
int shift = bits & 0x3F;
if (shift == 0)
{
add(m_ints, words, other.m_ints, 0, otherLen);
return;
}
long carry = addShiftedUp(m_ints, words, other.m_ints, 0, otherLen, shift);
if (carry != 0L)
{
m_ints[otherLen + words] ^= carry;
}
}
private static long addShiftedUp(long[] x, int xOff, long[] y, int yOff, int count, int shift)
{
int shiftInv = 64 - shift;
long prev = 0;
for (int i = 0; i < count; ++i)
{
long next = y[yOff + i];
x[xOff + i] ^= (next << shift) | prev;
prev = next >>> shiftInv;
}
return prev;
}
private static long addShiftedDown(long[] x, int xOff, long[] y, int yOff, int count, int shift)
{
int shiftInv = 64 - shift;
long prev = 0;
int i = count;
while (--i >= 0)
{
long next = y[yOff + i];
x[xOff + i] ^= (next >>> shift) | prev;
prev = next << shiftInv;
}
return prev;
}
public void addShiftedByWords(LongArray other, int words)
{
int otherUsedLen = other.getUsedLength();
if (otherUsedLen == 0)
{
return;
}
int minLen = otherUsedLen + words;
if (minLen > m_ints.length)
{
m_ints = resizedInts(minLen);
}
add(m_ints, words, other.m_ints, 0, otherUsedLen);
}
private static void add(long[] x, int xOff, long[] y, int yOff, int count)
{
for (int i = 0; i < count; ++i)
{
x[xOff + i] ^= y[yOff + i];
}
}
private static void add(long[] x, int xOff, long[] y, int yOff, long[] z, int zOff, int count)
{
for (int i = 0; i < count; ++i)
{
z[zOff + i] = x[xOff + i] ^ y[yOff + i];
}
}
private static void addBoth(long[] x, int xOff, long[] y1, int y1Off, long[] y2, int y2Off, int count)
{
for (int i = 0; i < count; ++i)
{
x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i];
}
}
private static void distribute(long[] x, int src, int dst1, int dst2, int count)
{
for (int i = 0; i < count; ++i)
{
long v = x[src + i];
x[dst1 + i] ^= v;
x[dst2 + i] ^= v;
}
}
public int getLength()
{
return m_ints.length;
}
private static void flipWord(long[] buf, int off, int bit, long word)
{
int n = off + (bit >>> 6);
int shift = bit & 0x3F;
if (shift == 0)
{
buf[n] ^= word;
}
else
{
buf[n] ^= word << shift;
word >>>= (64 - shift);
if (word != 0)
{
buf[++n] ^= word;
}
}
}
// private static long getWord(long[] buf, int off, int len, int bit)
// {
// int n = off + (bit >>> 6);
// int shift = bit & 0x3F;
// if (shift == 0)
// {
// return buf[n];
// }
// long result = buf[n] >>> shift;
// if (++n < len)
// {
// result |= buf[n] << (64 - shift);
// }
// return result;
// }
public boolean testBitZero()
{
return m_ints.length > 0 && (m_ints[0] & 1L) != 0;
}
private static boolean testBit(long[] buf, int off, int n)
{
// theInt = n / 64
int theInt = n >>> 6;
// theBit = n % 64
int theBit = n & 0x3F;
long tester = 1L << theBit;
return (buf[off + theInt] & tester) != 0;
}
private static void flipBit(long[] buf, int off, int n)
{
// theInt = n / 64
int theInt = n >>> 6;
// theBit = n % 64
int theBit = n & 0x3F;
long flipper = 1L << theBit;
buf[off + theInt] ^= flipper;
}
// private static void setBit(long[] buf, int off, int n)
// {
// // theInt = n / 64
// int theInt = n >>> 6;
// // theBit = n % 64
// int theBit = n & 0x3F;
// long setter = 1L << theBit;
// buf[off + theInt] |= setter;
// }
//
// private static void clearBit(long[] buf, int off, int n)
// {
// // theInt = n / 64
// int theInt = n >>> 6;
// // theBit = n % 64
// int theBit = n & 0x3F;
// long setter = 1L << theBit;
// buf[off + theInt] &= ~setter;
// }
private static void multiplyWord(long a, long[] b, int bLen, long[] c, int cOff)
{
if ((a & 1L) != 0L)
{
add(c, cOff, b, 0, bLen);
}
int k = 1;
while ((a >>>= 1) != 0L)
{
if ((a & 1L) != 0L)
{
long carry = addShiftedUp(c, cOff, b, 0, bLen, k);
if (carry != 0L)
{
c[cOff + bLen] ^= carry;
}
}
++k;
}
}
public LongArray modMultiplyLD(LongArray other, int m, int[] ks)
{
/*
* Find out the degree of each argument and handle the zero cases
*/
int aDeg = degree();
if (aDeg == 0)
{
return this;
}
int bDeg = other.degree();
if (bDeg == 0)
{
return other;
}
/*
* Swap if necessary so that A is the smaller argument
*/
LongArray A = this, B = other;
if (aDeg > bDeg)
{
A = other; B = this;
int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
}
/*
* Establish the word lengths of the arguments and result
*/
int aLen = (aDeg + 63) >>> 6;
int bLen = (bDeg + 63) >>> 6;
int cLen = (aDeg + bDeg + 62) >>> 6;
if (aLen == 1)
{
long a0 = A.m_ints[0];
if (a0 == 1L)
{
return B;
}
/*
* Fast path for small A, with performance dependent only on the number of set bits
*/
long[] c0 = new long[cLen];
multiplyWord(a0, B.m_ints, bLen, c0, 0);
/*
* Reduce the raw answer against the reduction coefficients
*/
return reduceResult(c0, 0, cLen, m, ks);
}
/*
* Determine if B will get bigger during shifting
*/
int bMax = (bDeg + 7 + 63) >>> 6;
/*
* Lookup table for the offset of each B in the tables
*/
int[] ti = new int[16];
/*
* Precompute table of all 4-bit products of B
*/
long[] T0 = new long[bMax << 4];
int tOff = bMax;
ti[1] = tOff;
System.arraycopy(B.m_ints, 0, T0, tOff, bLen);
for (int i = 2; i < 16; ++i)
{
ti[i] = (tOff += bMax);
if ((i & 1) == 0)
{
shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1);
}
else
{
add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
}
}
/*
* Second table with all 4-bit products of B shifted 4 bits
*/
long[] T1 = new long[T0.length];
shiftUp(T0, 0, T1, 0, T0.length, 4);
// shiftUp(T0, bMax, T1, bMax, tOff, 4);
long[] a = A.m_ints;
long[] c = new long[cLen];
int MASK = 0xF;
/*
* Lopez-Dahab algorithm
*/
for (int k = 56; k >= 0; k -= 8)
{
for (int j = 1; j < aLen; j += 2)
{
int aVal = (int)(a[j] >>> k);
int u = aVal & MASK;
int v = (aVal >>> 4) & MASK;
addBoth(c, j - 1, T0, ti[u], T1, ti[v], bMax);
}
shiftUp(c, 0, cLen, 8);
}
for (int k = 56; k >= 0; k -= 8)
{
for (int j = 0; j < aLen; j += 2)
{
int aVal = (int)(a[j] >>> k);
int u = aVal & MASK;
int v = (aVal >>> 4) & MASK;
addBoth(c, j, T0, ti[u], T1, ti[v], bMax);
}
if (k > 0)
{
shiftUp(c, 0, cLen, 8);
}
}
/*
* Finally the raw answer is collected, reduce it against the reduction coefficients
*/
return reduceResult(c, 0, cLen, m, ks);
}
public LongArray modMultiply(LongArray other, int m, int[] ks)
{
/*
* Find out the degree of each argument and handle the zero cases
*/
int aDeg = degree();
if (aDeg == 0)
{
return this;
}
int bDeg = other.degree();
if (bDeg == 0)
{
return other;
}
/*
* Swap if necessary so that A is the smaller argument
*/
LongArray A = this, B = other;
if (aDeg > bDeg)
{
A = other; B = this;
int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
}
/*
* Establish the word lengths of the arguments and result
*/
int aLen = (aDeg + 63) >>> 6;
int bLen = (bDeg + 63) >>> 6;
int cLen = (aDeg + bDeg + 62) >>> 6;
if (aLen == 1)
{
long a0 = A.m_ints[0];
if (a0 == 1L)
{
return B;
}
/*
* Fast path for small A, with performance dependent only on the number of set bits
*/
long[] c0 = new long[cLen];
multiplyWord(a0, B.m_ints, bLen, c0, 0);
/*
* Reduce the raw answer against the reduction coefficients
*/
return reduceResult(c0, 0, cLen, m, ks);
}
/*
* Determine if B will get bigger during shifting
*/
int bMax = (bDeg + 7 + 63) >>> 6;
/*
* Lookup table for the offset of each B in the tables
*/
int[] ti = new int[16];
/*
* Precompute table of all 4-bit products of B
*/
long[] T0 = new long[bMax << 4];
int tOff = bMax;
ti[1] = tOff;
System.arraycopy(B.m_ints, 0, T0, tOff, bLen);
for (int i = 2; i < 16; ++i)
{
ti[i] = (tOff += bMax);
if ((i & 1) == 0)
{
shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1);
}
else
{
add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
}
}
/*
* Second table with all 4-bit products of B shifted 4 bits
*/
long[] T1 = new long[T0.length];
shiftUp(T0, 0, T1, 0, T0.length, 4);
// shiftUp(T0, bMax, T1, bMax, tOff, 4);
long[] a = A.m_ints;
long[] c = new long[cLen << 3];
int MASK = 0xF;
/*
* Lopez-Dahab (Modified) algorithm
*/
for (int aPos = 0; aPos < aLen; ++aPos)
{
long aVal = a[aPos];
int cOff = aPos;
for (;;)
{
int u = (int)aVal & MASK;
aVal >>>= 4;
int v = (int)aVal & MASK;
addBoth(c, cOff, T0, ti[u], T1, ti[v], bMax);
aVal >>>= 4;
if (aVal == 0L)
{
break;
}
cOff += cLen;
}
}
{
int cOff = c.length;
while ((cOff -= cLen) != 0)
{
addShiftedUp(c, cOff - cLen, c, cOff, cLen, 8);
}
}
/*
* Finally the raw answer is collected, reduce it against the reduction coefficients
*/
return reduceResult(c, 0, cLen, m, ks);
}
public LongArray modMultiplyAlt(LongArray other, int m, int[] ks)
{
/*
* Find out the degree of each argument and handle the zero cases
*/
int aDeg = degree();
if (aDeg == 0)
{
return this;
}
int bDeg = other.degree();
if (bDeg == 0)
{
return other;
}
/*
* Swap if necessary so that A is the smaller argument
*/
LongArray A = this, B = other;
if (aDeg > bDeg)
{
A = other; B = this;
int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
}
/*
* Establish the word lengths of the arguments and result
*/
int aLen = (aDeg + 63) >>> 6;
int bLen = (bDeg + 63) >>> 6;
int cLen = (aDeg + bDeg + 62) >>> 6;
if (aLen == 1)
{
long a0 = A.m_ints[0];
if (a0 == 1L)
{
return B;
}
/*
* Fast path for small A, with performance dependent only on the number of set bits
*/
long[] c0 = new long[cLen];
multiplyWord(a0, B.m_ints, bLen, c0, 0);
/*
* Reduce the raw answer against the reduction coefficients
*/
return reduceResult(c0, 0, cLen, m, ks);
}
// NOTE: This works, but is slower than width 4 processing
// if (aLen == 2)
// {
// /*
// * Use common-multiplicand optimization to save ~1/4 of the adds
// */
// long a1 = A.m_ints[0], a2 = A.m_ints[1];
// long aa = a1 & a2; a1 ^= aa; a2 ^= aa;
//
// long[] b = B.m_ints;
// long[] c = new long[cLen];
// multiplyWord(aa, b, bLen, c, 1);
// add(c, 0, c, 1, cLen - 1);
// multiplyWord(a1, b, bLen, c, 0);
// multiplyWord(a2, b, bLen, c, 1);
//
// /*
// * Reduce the raw answer against the reduction coefficients
// */
// return reduceResult(c, 0, cLen, m, ks);
// }
/*
* Determine the parameters of the interleaved window algorithm: the 'width' in bits to
* process together, the number of evaluation 'positions' implied by that width, and the
* 'top' position at which the regular window algorithm stops.
*/
int width, positions, top, banks;
// NOTE: width 4 is the fastest over the entire range of sizes used in current crypto
// width = 1; positions = 64; top = 64; banks = 4;
// width = 2; positions = 32; top = 64; banks = 4;
// width = 3; positions = 21; top = 63; banks = 3;
width = 4; positions = 16; top = 64; banks = 8;
// width = 5; positions = 13; top = 65; banks = 7;
// width = 7; positions = 9; top = 63; banks = 9;
// width = 8; positions = 8; top = 64; banks = 8;
/*
* Determine if B will get bigger during shifting
*/
int shifts = top < 64 ? positions : positions - 1;
int bMax = (bDeg + shifts + 63) >>> 6;
int bTotal = bMax * banks, stride = width * banks;
/*
* Create a single temporary buffer, with an offset table to find the positions of things in it
*/
int[] ci = new int[1 << width];
int cTotal = aLen;
{
ci[0] = cTotal;
cTotal += bTotal;
ci[1] = cTotal;
for (int i = 2; i < ci.length; ++i)
{
cTotal += cLen;
ci[i] = cTotal;
}
cTotal += cLen;
}
// NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen'
++cTotal;
long[] c = new long[cTotal];
// Prepare A in interleaved form, according to the chosen width
interleave(A.m_ints, 0, c, 0, aLen, width);
// Make a working copy of B, since we will be shifting it
{
int bOff = aLen;
System.arraycopy(B.m_ints, 0, c, bOff, bLen);
for (int bank = 1; bank < banks; ++bank)
{
shiftUp(c, aLen, c, bOff += bMax, bMax, bank);
}
}
/*
* The main loop analyzes the interleaved windows in A, and for each non-zero window
* a single word-array XOR is performed to a carefully selected slice of 'c'. The loop is
* breadth-first, checking the lowest window in each word, then looping again for the
* next higher window position.
*/
int MASK = (1 << width) - 1;
int k = 0;
for (;;)
{
int aPos = 0;
do
{
long aVal = c[aPos] >>> k;
int bank = 0, bOff = aLen;
for (;;)
{
int index = (int)(aVal) & MASK;
if (index != 0)
{
/*
* Add to a 'c' buffer based on the bit-pattern of 'index'. Since A is in
* interleaved form, the bits represent the current B shifted by 0, 'positions',
* 'positions' * 2, ..., 'positions' * ('width' - 1)
*/
add(c, aPos + ci[index], c, bOff, bMax);
}
if (++bank == banks)
{
break;
}
bOff += bMax;
aVal >>>= width;
}
}
while (++aPos < aLen);
if ((k += stride) >= top)
{
if (k >= 64)
{
break;
}
/*
* Adjustment for window setups with top == 63, the final bit (if any) is processed
* as the top-bit of a window
*/
k = 64 - width;
MASK &= MASK << (top - k);
}
/*
* After each position has been checked for all words of A, B is shifted up 1 place
*/
shiftUp(c, aLen, bTotal, banks);
}
int ciPos = ci.length;
while (--ciPos > 1)
{
if ((ciPos & 1L) == 0L)
{
/*
* For even numbers, shift contents and add to the half-position
*/
addShiftedUp(c, ci[ciPos >>> 1], c, ci[ciPos], cLen, positions);
}
else
{
/*
* For odd numbers, 'distribute' contents to the result and the next-lowest position
*/
distribute(c, ci[ciPos], ci[ciPos - 1], ci[1], cLen);
}
}
/*
* Finally the raw answer is collected, reduce it against the reduction coefficients
*/
return reduceResult(c, ci[1], cLen, m, ks);
}
public LongArray modReduce(int m, int[] ks)
{
long[] buf = Arrays.clone(m_ints);
int rLen = reduceInPlace(buf, 0, buf.length, m, ks);
return new LongArray(buf, 0, rLen);
}
public LongArray multiply(LongArray other, int m, int[] ks)
{
/*
* Find out the degree of each argument and handle the zero cases
*/
int aDeg = degree();
if (aDeg == 0)
{
return this;
}
int bDeg = other.degree();
if (bDeg == 0)
{
return other;
}
/*
* Swap if necessary so that A is the smaller argument
*/
LongArray A = this, B = other;
if (aDeg > bDeg)
{
A = other; B = this;
int tmp = aDeg; aDeg = bDeg; bDeg = tmp;
}
/*
* Establish the word lengths of the arguments and result
*/
int aLen = (aDeg + 63) >>> 6;
int bLen = (bDeg + 63) >>> 6;
int cLen = (aDeg + bDeg + 62) >>> 6;
if (aLen == 1)
{
long a0 = A.m_ints[0];
if (a0 == 1L)
{
return B;
}
/*
* Fast path for small A, with performance dependent only on the number of set bits
*/
long[] c0 = new long[cLen];
multiplyWord(a0, B.m_ints, bLen, c0, 0);
/*
* Reduce the raw answer against the reduction coefficients
*/
// return reduceResult(c0, 0, cLen, m, ks);
return new LongArray(c0, 0, cLen);
}
/*
* Determine if B will get bigger during shifting
*/
int bMax = (bDeg + 7 + 63) >>> 6;
/*
* Lookup table for the offset of each B in the tables
*/
int[] ti = new int[16];
/*
* Precompute table of all 4-bit products of B
*/
long[] T0 = new long[bMax << 4];
int tOff = bMax;
ti[1] = tOff;
System.arraycopy(B.m_ints, 0, T0, tOff, bLen);
for (int i = 2; i < 16; ++i)
{
ti[i] = (tOff += bMax);
if ((i & 1) == 0)
{
shiftUp(T0, tOff >>> 1, T0, tOff, bMax, 1);
}
else
{
add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax);
}
}
/*
* Second table with all 4-bit products of B shifted 4 bits
*/
long[] T1 = new long[T0.length];
shiftUp(T0, 0, T1, 0, T0.length, 4);
// shiftUp(T0, bMax, T1, bMax, tOff, 4);
long[] a = A.m_ints;
long[] c = new long[cLen << 3];
int MASK = 0xF;
/*
* Lopez-Dahab (Modified) algorithm
*/
for (int aPos = 0; aPos < aLen; ++aPos)
{
long aVal = a[aPos];
int cOff = aPos;
for (;;)
{
int u = (int)aVal & MASK;
aVal >>>= 4;
int v = (int)aVal & MASK;
addBoth(c, cOff, T0, ti[u], T1, ti[v], bMax);
aVal >>>= 4;
if (aVal == 0L)
{
break;
}
cOff += cLen;
}
}
{
int cOff = c.length;
while ((cOff -= cLen) != 0)
{
addShiftedUp(c, cOff - cLen, c, cOff, cLen, 8);
}
}
/*
* Finally the raw answer is collected, reduce it against the reduction coefficients
*/
// return reduceResult(c, 0, cLen, m, ks);
return new LongArray(c, 0, cLen);
}
public void reduce(int m, int[] ks)
{
long[] buf = m_ints;
int rLen = reduceInPlace(buf, 0, buf.length, m, ks);
if (rLen < buf.length)
{
m_ints = new long[rLen];
System.arraycopy(buf, 0, m_ints, 0, rLen);
}
}
private static LongArray reduceResult(long[] buf, int off, int len, int m, int[] ks)
{
int rLen = reduceInPlace(buf, off, len, m, ks);
return new LongArray(buf, off, rLen);
}
// private static void deInterleave(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
// {
// for (int i = 0; i < count; ++i)
// {
// z[zOff + i] = deInterleave(x[zOff + i], rounds);
// }
// }
//
// private static long deInterleave(long x, int rounds)
// {
// while (--rounds >= 0)
// {
// x = deInterleave32(x & DEINTERLEAVE_MASK) | (deInterleave32((x >>> 1) & DEINTERLEAVE_MASK) << 32);
// }
// return x;
// }
//
// private static long deInterleave32(long x)
// {
// x = (x | (x >>> 1)) & 0x3333333333333333L;
// x = (x | (x >>> 2)) & 0x0F0F0F0F0F0F0F0FL;
// x = (x | (x >>> 4)) & 0x00FF00FF00FF00FFL;
// x = (x | (x >>> 8)) & 0x0000FFFF0000FFFFL;
// x = (x | (x >>> 16)) & 0x00000000FFFFFFFFL;
// return x;
// }
private static int reduceInPlace(long[] buf, int off, int len, int m, int[] ks)
{
int mLen = (m + 63) >>> 6;
if (len < mLen)
{
return len;
}
int numBits = Math.min(len << 6, (m << 1) - 1); // TODO use actual degree?
int excessBits = (len << 6) - numBits;
while (excessBits >= 64)
{
--len;
excessBits -= 64;
}
int kLen = ks.length, kMax = ks[kLen - 1], kNext = kLen > 1 ? ks[kLen - 2] : 0;
int wordWiseLimit = Math.max(m, kMax + 64);
int vectorableWords = (excessBits + Math.min(numBits - wordWiseLimit, m - kNext)) >> 6;
if (vectorableWords > 1)
{
int vectorWiseWords = len - vectorableWords;
reduceVectorWise(buf, off, len, vectorWiseWords, m, ks);
while (len > vectorWiseWords)
{
buf[off + --len] = 0L;
}
numBits = vectorWiseWords << 6;
}
if (numBits > wordWiseLimit)
{
reduceWordWise(buf, off, len, wordWiseLimit, m, ks);
numBits = wordWiseLimit;
}
if (numBits > m)
{
reduceBitWise(buf, off, numBits, m, ks);
}
return mLen;
}
private static void reduceBitWise(long[] buf, int off, int bitlength, int m, int[] ks)
{
while (--bitlength >= m)
{
if (testBit(buf, off, bitlength))
{
reduceBit(buf, off, bitlength, m, ks);
}
}
}
private static void reduceBit(long[] buf, int off, int bit, int m, int[] ks)
{
flipBit(buf, off, bit);
int n = bit - m;
int j = ks.length;
while (--j >= 0)
{
flipBit(buf, off, ks[j] + n);
}
flipBit(buf, off, n);
}
private static void reduceWordWise(long[] buf, int off, int len, int toBit, int m, int[] ks)
{
int toPos = toBit >>> 6;
while (--len > toPos)
{
long word = buf[off + len];
if (word != 0)
{
buf[off + len] = 0;
reduceWord(buf, off, (len << 6), word, m, ks);
}
}
{
int partial = toBit & 0x3F;
long word = buf[off + toPos] >>> partial;
if (word != 0)
{
buf[off + toPos] ^= word << partial;
reduceWord(buf, off, toBit, word, m, ks);
}
}
}
private static void reduceWord(long[] buf, int off, int bit, long word, int m, int[] ks)
{
int offset = bit - m;
int j = ks.length;
while (--j >= 0)
{
flipWord(buf, off, offset + ks[j], word);
}
flipWord(buf, off, offset, word);
}
private static void reduceVectorWise(long[] buf, int off, int len, int words, int m, int[] ks)
{
/*
* NOTE: It's important we go from highest coefficient to lowest, because for the highest
* one (only) we allow the ranges to partially overlap, and therefore any changes must take
* effect for the subsequent lower coefficients.
*/
int baseBit = (words << 6) - m;
int j = ks.length;
while (--j >= 0)
{
flipVector(buf, off, buf, off + words, len - words, baseBit + ks[j]);
}
flipVector(buf, off, buf, off + words, len - words, baseBit);
}
private static void flipVector(long[] x, int xOff, long[] y, int yOff, int yLen, int bits)
{
xOff += bits >>> 6;
bits &= 0x3F;
if (bits == 0)
{
add(x, xOff, y, yOff, yLen);
}
else
{
long carry = addShiftedDown(x, xOff + 1, y, yOff, yLen, 64 - bits);
x[xOff] ^= carry;
}
}
public LongArray modSquare(int m, int[] ks)
{
int len = getUsedLength();
if (len == 0)
{
return this;
}
int _2len = len << 1;
long[] r = new long[_2len];
int pos = 0;
while (pos < _2len)
{
long mi = m_ints[pos >>> 1];
r[pos++] = interleave2_32to64((int)mi);
r[pos++] = interleave2_32to64((int)(mi >>> 32));
}
return new LongArray(r, 0, reduceInPlace(r, 0, r.length, m, ks));
}
public LongArray modSquareN(int n, int m, int[] ks)
{
int len = getUsedLength();
if (len == 0)
{
return this;
}
int mLen = (m + 63) >>> 6;
long[] r = new long[mLen << 1];
System.arraycopy(m_ints, 0, r, 0, len);
while (--n >= 0)
{
squareInPlace(r, len, m, ks);
len = reduceInPlace(r, 0, r.length, m, ks);
}
return new LongArray(r, 0, len);
}
public LongArray square(int m, int[] ks)
{
int len = getUsedLength();
if (len == 0)
{
return this;
}
int _2len = len << 1;
long[] r = new long[_2len];
int pos = 0;
while (pos < _2len)
{
long mi = m_ints[pos >>> 1];
r[pos++] = interleave2_32to64((int)mi);
r[pos++] = interleave2_32to64((int)(mi >>> 32));
}
return new LongArray(r, 0, r.length);
}
private static void squareInPlace(long[] x, int xLen, int m, int[] ks)
{
int pos = xLen << 1;
while (--xLen >= 0)
{
long xVal = x[xLen];
x[--pos] = interleave2_32to64((int)(xVal >>> 32));
x[--pos] = interleave2_32to64((int)xVal);
}
}
private static void interleave(long[] x, int xOff, long[] z, int zOff, int count, int width)
{
switch (width)
{
case 3:
interleave3(x, xOff, z, zOff, count);
break;
case 5:
interleave5(x, xOff, z, zOff, count);
break;
case 7:
interleave7(x, xOff, z, zOff, count);
break;
default:
interleave2_n(x, xOff, z, zOff, count, bitLengths[width] - 1);
break;
}
}
private static void interleave3(long[] x, int xOff, long[] z, int zOff, int count)
{
for (int i = 0; i < count; ++i)
{
z[zOff + i] = interleave3(x[xOff + i]);
}
}
private static long interleave3(long x)
{
long z = x & (1L << 63);
return z
| interleave3_21to63((int)x & 0x1FFFFF)
| interleave3_21to63((int)(x >>> 21) & 0x1FFFFF) << 1
| interleave3_21to63((int)(x >>> 42) & 0x1FFFFF) << 2;
// int zPos = 0, wPos = 0, xPos = 0;
// for (;;)
// {
// z |= ((x >>> xPos) & 1L) << zPos;
// if (++zPos == 63)
// {
// String sz2 = Long.toBinaryString(z);
// return z;
// }
// if ((xPos += 21) >= 63)
// {
// xPos = ++wPos;
// }
// }
}
private static long interleave3_21to63(int x)
{
int r00 = INTERLEAVE3_TABLE[x & 0x7F];
int r21 = INTERLEAVE3_TABLE[(x >>> 7) & 0x7F];
int r42 = INTERLEAVE3_TABLE[x >>> 14];
return (r42 & 0xFFFFFFFFL) << 42 | (r21 & 0xFFFFFFFFL) << 21 | (r00 & 0xFFFFFFFFL);
}
private static void interleave5(long[] x, int xOff, long[] z, int zOff, int count)
{
for (int i = 0; i < count; ++i)
{
z[zOff + i] = interleave5(x[xOff + i]);
}
}
private static long interleave5(long x)
{
return interleave3_13to65((int)x & 0x1FFF)
| interleave3_13to65((int)(x >>> 13) & 0x1FFF) << 1
| interleave3_13to65((int)(x >>> 26) & 0x1FFF) << 2
| interleave3_13to65((int)(x >>> 39) & 0x1FFF) << 3
| interleave3_13to65((int)(x >>> 52) & 0x1FFF) << 4;
// long z = 0;
// int zPos = 0, wPos = 0, xPos = 0;
// for (;;)
// {
// z |= ((x >>> xPos) & 1L) << zPos;
// if (++zPos == 64)
// {
// return z;
// }
// if ((xPos += 13) >= 64)
// {
// xPos = ++wPos;
// }
// }
}
private static long interleave3_13to65(int x)
{
int r00 = INTERLEAVE5_TABLE[x & 0x7F];
int r35 = INTERLEAVE5_TABLE[x >>> 7];
return (r35 & 0xFFFFFFFFL) << 35 | (r00 & 0xFFFFFFFFL);
}
private static void interleave7(long[] x, int xOff, long[] z, int zOff, int count)
{
for (int i = 0; i < count; ++i)
{
z[zOff + i] = interleave7(x[xOff + i]);
}
}
private static long interleave7(long x)
{
long z = x & (1L << 63);
return z
| INTERLEAVE7_TABLE[(int)x & 0x1FF]
| INTERLEAVE7_TABLE[(int)(x >>> 9) & 0x1FF] << 1
| INTERLEAVE7_TABLE[(int)(x >>> 18) & 0x1FF] << 2
| INTERLEAVE7_TABLE[(int)(x >>> 27) & 0x1FF] << 3
| INTERLEAVE7_TABLE[(int)(x >>> 36) & 0x1FF] << 4
| INTERLEAVE7_TABLE[(int)(x >>> 45) & 0x1FF] << 5
| INTERLEAVE7_TABLE[(int)(x >>> 54) & 0x1FF] << 6;
// int zPos = 0, wPos = 0, xPos = 0;
// for (;;)
// {
// z |= ((x >>> xPos) & 1L) << zPos;
// if (++zPos == 63)
// {
// return z;
// }
// if ((xPos += 9) >= 63)
// {
// xPos = ++wPos;
// }
// }
}
private static void interleave2_n(long[] x, int xOff, long[] z, int zOff, int count, int rounds)
{
for (int i = 0; i < count; ++i)
{
z[zOff + i] = interleave2_n(x[xOff + i], rounds);
}
}
private static long interleave2_n(long x, int rounds)
{
while (rounds > 1)
{
rounds -= 2;
x = interleave4_16to64((int)x & 0xFFFF)
| interleave4_16to64((int)(x >>> 16) & 0xFFFF) << 1
| interleave4_16to64((int)(x >>> 32) & 0xFFFF) << 2
| interleave4_16to64((int)(x >>> 48) & 0xFFFF) << 3;
}
if (rounds > 0)
{
x = interleave2_32to64((int)x) | interleave2_32to64((int)(x >>> 32)) << 1;
}
return x;
}
private static long interleave4_16to64(int x)
{
int r00 = INTERLEAVE4_TABLE[x & 0xFF];
int r32 = INTERLEAVE4_TABLE[x >>> 8];
return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
}
private static long interleave2_32to64(int x)
{
int r00 = INTERLEAVE2_TABLE[x & 0xFF] | INTERLEAVE2_TABLE[(x >>> 8) & 0xFF] << 16;
int r32 = INTERLEAVE2_TABLE[(x >>> 16) & 0xFF] | INTERLEAVE2_TABLE[x >>> 24] << 16;
return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL);
}
// private static LongArray expItohTsujii2(LongArray B, int n, int m, int[] ks)
// {
// LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
// int scale = 1;
//
// int numTerms = n;
// while (numTerms > 1)
// {
// if ((numTerms & 1) != 0)
// {
// t3 = t3.modMultiply(t1, m, ks);
// t1 = t1.modSquareN(scale, m, ks);
// }
//
// LongArray t2 = t1.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
// numTerms >>>= 1; scale <<= 1;
// }
//
// return t3.modMultiply(t1, m, ks);
// }
//
// private static LongArray expItohTsujii23(LongArray B, int n, int m, int[] ks)
// {
// LongArray t1 = B, t3 = new LongArray(new long[]{ 1L });
// int scale = 1;
//
// int numTerms = n;
// while (numTerms > 1)
// {
// boolean m03 = numTerms % 3 == 0;
// boolean m14 = !m03 && (numTerms & 1) != 0;
//
// if (m14)
// {
// t3 = t3.modMultiply(t1, m, ks);
// t1 = t1.modSquareN(scale, m, ks);
// }
//
// LongArray t2 = t1.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
//
// if (m03)
// {
// t2 = t2.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
// numTerms /= 3; scale *= 3;
// }
// else
// {
// numTerms >>>= 1; scale <<= 1;
// }
// }
//
// return t3.modMultiply(t1, m, ks);
// }
//
// private static LongArray expItohTsujii235(LongArray B, int n, int m, int[] ks)
// {
// LongArray t1 = B, t4 = new LongArray(new long[]{ 1L });
// int scale = 1;
//
// int numTerms = n;
// while (numTerms > 1)
// {
// if (numTerms % 5 == 0)
// {
//// t1 = expItohTsujii23(t1, 5, m, ks);
//
// LongArray t3 = t1;
// t1 = t1.modSquareN(scale, m, ks);
//
// LongArray t2 = t1.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
// t2 = t1.modSquareN(scale << 1, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
//
// t1 = t1.modMultiply(t3, m, ks);
//
// numTerms /= 5; scale *= 5;
// continue;
// }
//
// boolean m03 = numTerms % 3 == 0;
// boolean m14 = !m03 && (numTerms & 1) != 0;
//
// if (m14)
// {
// t4 = t4.modMultiply(t1, m, ks);
// t1 = t1.modSquareN(scale, m, ks);
// }
//
// LongArray t2 = t1.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
//
// if (m03)
// {
// t2 = t2.modSquareN(scale, m, ks);
// t1 = t1.modMultiply(t2, m, ks);
// numTerms /= 3; scale *= 3;
// }
// else
// {
// numTerms >>>= 1; scale <<= 1;
// }
// }
//
// return t4.modMultiply(t1, m, ks);
// }
public LongArray modInverse(int m, int[] ks)
{
/*
* Fermat's Little Theorem
*/
// LongArray A = this;
// LongArray B = A.modSquare(m, ks);
// LongArray R0 = B, R1 = B;
// for (int i = 2; i < m; ++i)
// {
// R1 = R1.modSquare(m, ks);
// R0 = R0.modMultiply(R1, m, ks);
// }
//
// return R0;
/*
* Itoh-Tsujii
*/
// LongArray B = modSquare(m, ks);
// switch (m)
// {
// case 409:
// return expItohTsujii23(B, m - 1, m, ks);
// case 571:
// return expItohTsujii235(B, m - 1, m, ks);
// case 163:
// case 233:
// case 283:
// default:
// return expItohTsujii2(B, m - 1, m, ks);
// }
/*
* Inversion in F2m using the extended Euclidean algorithm
*
* Input: A nonzero polynomial a(z) of degree at most m-1
* Output: a(z)^(-1) mod f(z)
*/
int uzDegree = degree();
if (uzDegree == 0)
{
throw new IllegalStateException();
}
if (uzDegree == 1)
{
return this;
}
// u(z) := a(z)
LongArray uz = (LongArray)clone();
int t = (m + 63) >>> 6;
// v(z) := f(z)
LongArray vz = new LongArray(t);
reduceBit(vz.m_ints, 0, m, m, ks);
// g1(z) := 1, g2(z) := 0
LongArray g1z = new LongArray(t);
g1z.m_ints[0] = 1L;
LongArray g2z = new LongArray(t);
int[] uvDeg = new int[]{ uzDegree, m + 1 };
LongArray[] uv = new LongArray[]{ uz, vz };
int[] ggDeg = new int[]{ 1, 0 };
LongArray[] gg = new LongArray[]{ g1z, g2z };
int b = 1;
int duv1 = uvDeg[b];
int dgg1 = ggDeg[b];
int j = duv1 - uvDeg[1 - b];
for (;;)
{
if (j < 0)
{
j = -j;
uvDeg[b] = duv1;
ggDeg[b] = dgg1;
b = 1 - b;
duv1 = uvDeg[b];
dgg1 = ggDeg[b];
}
uv[b].addShiftedByBitsSafe(uv[1 - b], uvDeg[1 - b], j);
int duv2 = uv[b].degreeFrom(duv1);
if (duv2 == 0)
{
return gg[1 - b];
}
{
int dgg2 = ggDeg[1 - b];
gg[b].addShiftedByBitsSafe(gg[1 - b], dgg2, j);
dgg2 += j;
if (dgg2 > dgg1)
{
dgg1 = dgg2;
}
else if (dgg2 == dgg1)
{
dgg1 = gg[b].degreeFrom(dgg1);
}
}
j += (duv2 - duv1);
duv1 = duv2;
}
}
public boolean equals(Object o)
{
if (!(o instanceof LongArray))
{
return false;
}
LongArray other = (LongArray) o;
int usedLen = getUsedLength();
if (other.getUsedLength() != usedLen)
{
return false;
}
for (int i = 0; i < usedLen; i++)
{
if (m_ints[i] != other.m_ints[i])
{
return false;
}
}
return true;
}
public int hashCode()
{
int usedLen = getUsedLength();
int hash = 1;
for (int i = 0; i < usedLen; i++)
{
long mi = m_ints[i];
hash *= 31;
hash ^= (int)mi;
hash *= 31;
hash ^= (int)(mi >>> 32);
}
return hash;
}
public Object clone()
{
return new LongArray(Arrays.clone(m_ints));
}
public String toString()
{
int i = getUsedLength();
if (i == 0)
{
return "0";
}
StringBuffer sb = new StringBuffer(Long.toBinaryString(m_ints[--i]));
while (--i >= 0)
{
String s = Long.toBinaryString(m_ints[i]);
// Add leading zeroes, except for highest significant word
int len = s.length();
if (len < 64)
{
sb.append(ZEROES.substring(len));
}
sb.append(s);
}
return sb.toString();
}
}