
org.spongycastle.pqc.jcajce.provider.mceliece.BCMcEliecePrivateKey Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of prov Show documentation
Show all versions of prov Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle
intended for the Android platform. Android unfortunately ships with a stripped-down version of
Bouncy Castle, which prevents easy upgrades - Spongy Castle overcomes this and provides a full,
up-to-date version of the Bouncy Castle cryptographic libs.
package org.spongycastle.pqc.jcajce.provider.mceliece;
import java.io.IOException;
import java.security.PrivateKey;
import org.spongycastle.asn1.ASN1ObjectIdentifier;
import org.spongycastle.asn1.ASN1Primitive;
import org.spongycastle.asn1.DERNull;
import org.spongycastle.asn1.pkcs.PrivateKeyInfo;
import org.spongycastle.asn1.x509.AlgorithmIdentifier;
import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.pqc.asn1.McEliecePrivateKey;
import org.spongycastle.pqc.crypto.mceliece.McElieceKeyPairGenerator;
import org.spongycastle.pqc.crypto.mceliece.McElieceParameters;
import org.spongycastle.pqc.crypto.mceliece.McEliecePrivateKeyParameters;
import org.spongycastle.pqc.jcajce.spec.McEliecePrivateKeySpec;
import org.spongycastle.pqc.math.linearalgebra.GF2Matrix;
import org.spongycastle.pqc.math.linearalgebra.GF2mField;
import org.spongycastle.pqc.math.linearalgebra.Permutation;
import org.spongycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM;
/**
* This class implements a McEliece private key and is usually instantiated by
* the {@link McElieceKeyPairGenerator} or {@link McElieceKeyFactorySpi}.
*/
public class BCMcEliecePrivateKey
implements CipherParameters, PrivateKey
{
/**
*
*/
private static final long serialVersionUID = 1L;
// the OID of the algorithm
private String oid;
// the length of the code
private int n;
// the dimension of the code, where k >= n - mt
private int k;
// the underlying finite field
private GF2mField field;
// the irreducible Goppa polynomial
private PolynomialGF2mSmallM goppaPoly;
// the matrix S^-1
private GF2Matrix sInv;
// the permutation P1 used to generate the systematic check matrix
private Permutation p1;
// the permutation P2 used to compute the public generator matrix
private Permutation p2;
// the canonical check matrix of the code
private GF2Matrix h;
// the matrix used to compute square roots in (GF(2^m))^t
private PolynomialGF2mSmallM[] qInv;
private McElieceParameters mcElieceParams;
/**
* Constructor (used by the {@link McElieceKeyPairGenerator}).
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param field the field polynomial defining the finite field
* GF(2m)
* @param goppaPoly the irreducible Goppa polynomial
* @param sInv the matrix S-1
* @param p1 the permutation used to generate the systematic check
* matrix
* @param p2 the permutation used to compute the public generator
* matrix
* @param h the canonical check matrix
* @param qInv the matrix used to compute square roots in
* (GF(2m))t
*/
public BCMcEliecePrivateKey(String oid, int n, int k, GF2mField field,
PolynomialGF2mSmallM goppaPoly, GF2Matrix sInv, Permutation p1,
Permutation p2, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
this.oid = oid;
this.n = n;
this.k = k;
this.field = field;
this.goppaPoly = goppaPoly;
this.sInv = sInv;
this.p1 = p1;
this.p2 = p2;
this.h = h;
this.qInv = qInv;
}
/**
* Constructor (used by the {@link McElieceKeyFactorySpi}).
*
* @param keySpec a {@link McEliecePrivateKeySpec}
*/
public BCMcEliecePrivateKey(McEliecePrivateKeySpec keySpec)
{
this(keySpec.getOIDString(), keySpec.getN(), keySpec.getK(), keySpec.getField(), keySpec
.getGoppaPoly(), keySpec.getSInv(), keySpec.getP1(), keySpec
.getP2(), keySpec.getH(), keySpec.getQInv());
}
public BCMcEliecePrivateKey(McEliecePrivateKeyParameters params)
{
this(params.getOIDString(), params.getN(), params.getK(), params.getField(), params.getGoppaPoly(),
params.getSInv(), params.getP1(), params.getP2(), params.getH(), params.getQInv());
this.mcElieceParams = params.getParameters();
}
/**
* Return the name of the algorithm.
*
* @return "McEliece"
*/
public String getAlgorithm()
{
return "McEliece";
}
/**
* @return the length of the code
*/
public int getN()
{
return n;
}
/**
* @return the dimension of the code
*/
public int getK()
{
return k;
}
/**
* @return the finite field
*/
public GF2mField getField()
{
return field;
}
/**
* @return the irreducible Goppa polynomial
*/
public PolynomialGF2mSmallM getGoppaPoly()
{
return goppaPoly;
}
/**
* @return the k x k random binary non-singular matrix S
*/
public GF2Matrix getSInv()
{
return sInv;
}
/**
* @return the permutation used to generate the systematic check matrix
*/
public Permutation getP1()
{
return p1;
}
/**
* @return the permutation used to compute the public generator matrix
*/
public Permutation getP2()
{
return p2;
}
/**
* @return the canonical check matrix
*/
public GF2Matrix getH()
{
return h;
}
/**
* @return the matrix for computing square roots in (GF(2^m))^t
*/
public PolynomialGF2mSmallM[] getQInv()
{
return qInv;
}
/**
* @return the OID of the algorithm
*/
public String getOIDString()
{
return oid;
}
/**
* @return a human readable form of the key
*/
public String toString()
{
String result = " length of the code : " + n + "\n";
result += " dimension of the code : " + k + "\n";
result += " irreducible Goppa polynomial: " + goppaPoly + "\n";
result += " (k x k)-matrix S^-1 : " + sInv + "\n";
result += " permutation P1 : " + p1 + "\n";
result += " permutation P2 : " + p2;
return result;
}
/**
* Compare this key with another object.
*
* @param other the other object
* @return the result of the comparison
*/
public boolean equals(Object other)
{
if (!(other instanceof BCMcEliecePrivateKey))
{
return false;
}
BCMcEliecePrivateKey otherKey = (BCMcEliecePrivateKey)other;
return (n == otherKey.n) && (k == otherKey.k)
&& field.equals(otherKey.field)
&& goppaPoly.equals(otherKey.goppaPoly)
&& sInv.equals(otherKey.sInv) && p1.equals(otherKey.p1)
&& p2.equals(otherKey.p2) && h.equals(otherKey.h);
}
/**
* @return the hash code of this key
*/
public int hashCode()
{
return k + n + field.hashCode() + goppaPoly.hashCode()
+ sInv.hashCode() + p1.hashCode() + p2.hashCode()
+ h.hashCode();
}
/**
* @return the OID to encode in the SubjectPublicKeyInfo structure
*/
protected ASN1ObjectIdentifier getOID()
{
return new ASN1ObjectIdentifier(McElieceKeyFactorySpi.OID);
}
/**
* @return the algorithm parameters to encode in the SubjectPublicKeyInfo
* structure
*/
protected ASN1Primitive getAlgParams()
{
return null; // FIXME: needed at all?
}
/**
* Return the key data to encode in the SubjectPublicKeyInfo structure.
*
* The ASN.1 definition of the key structure is
*
*
* McEliecePrivateKey ::= SEQUENCE {
* n INTEGER -- length of the code
* k INTEGER -- dimension of the code
* fieldPoly OCTET STRING -- field polynomial defining GF(2ˆm)
* goppaPoly OCTET STRING -- irreducible Goppa polynomial
* sInv OCTET STRING -- matrix Sˆ-1
* p1 OCTET STRING -- permutation P1
* p2 OCTET STRING -- permutation P2
* h OCTET STRING -- canonical check matrix
* qInv SEQUENCE OF OCTET STRING -- matrix used to compute square roots
* }
*
*
* @return the key data to encode in the SubjectPublicKeyInfo structure
*/
public byte[] getEncoded()
{
McEliecePrivateKey privateKey = new McEliecePrivateKey(new ASN1ObjectIdentifier(oid), n, k, field, goppaPoly, sInv, p1, p2, h, qInv);
PrivateKeyInfo pki;
try
{
AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(this.getOID(), DERNull.INSTANCE);
pki = new PrivateKeyInfo(algorithmIdentifier, privateKey);
}
catch (IOException e)
{
e.printStackTrace();
return null;
}
try
{
byte[] encoded = pki.getEncoded();
return encoded;
}
catch (IOException e)
{
e.printStackTrace();
return null;
}
}
public String getFormat()
{
// TODO Auto-generated method stub
return null;
}
public McElieceParameters getMcElieceParameters()
{
return mcElieceParams;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy