
org.spongycastle.pqc.jcajce.provider.rainbow.BCRainbowPublicKey Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of prov Show documentation
Show all versions of prov Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle
intended for the Android platform. Android unfortunately ships with a stripped-down version of
Bouncy Castle, which prevents easy upgrades - Spongy Castle overcomes this and provides a full,
up-to-date version of the Bouncy Castle cryptographic libs.
package org.spongycastle.pqc.jcajce.provider.rainbow;
import java.security.PublicKey;
import org.spongycastle.asn1.DERNull;
import org.spongycastle.asn1.x509.AlgorithmIdentifier;
import org.spongycastle.pqc.asn1.PQCObjectIdentifiers;
import org.spongycastle.pqc.asn1.RainbowPublicKey;
import org.spongycastle.pqc.crypto.rainbow.RainbowParameters;
import org.spongycastle.pqc.crypto.rainbow.RainbowPublicKeyParameters;
import org.spongycastle.pqc.crypto.rainbow.util.RainbowUtil;
import org.spongycastle.pqc.jcajce.provider.util.KeyUtil;
import org.spongycastle.pqc.jcajce.spec.RainbowPublicKeySpec;
import org.spongycastle.util.Arrays;
/**
* This class implements CipherParameters and PublicKey.
*
* The public key in Rainbow consists of n - v1 polynomial components of the
* private key's F and the field structure of the finite field k.
*
* The quadratic (or mixed) coefficients of the polynomials from the public key
* are stored in the 2-dimensional array in lexicographical order, requiring n *
* (n + 1) / 2 entries for each polynomial. The singular terms are stored in a
* 2-dimensional array requiring n entries per polynomial, the scalar term of
* each polynomial is stored in a 1-dimensional array.
*
* More detailed information on the public key is to be found in the paper of
* Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial
* Signature Scheme. ACNS 2005: 164-175 (http://dx.doi.org/10.1007/11496137_12)
*/
public class BCRainbowPublicKey
implements PublicKey
{
private static final long serialVersionUID = 1L;
private short[][] coeffquadratic;
private short[][] coeffsingular;
private short[] coeffscalar;
private int docLength; // length of possible document to sign
private RainbowParameters rainbowParams;
/**
* Constructor
*
* @param docLength
* @param coeffQuadratic
* @param coeffSingular
* @param coeffScalar
*/
public BCRainbowPublicKey(int docLength,
short[][] coeffQuadratic, short[][] coeffSingular,
short[] coeffScalar)
{
this.docLength = docLength;
this.coeffquadratic = coeffQuadratic;
this.coeffsingular = coeffSingular;
this.coeffscalar = coeffScalar;
}
/**
* Constructor (used by the {@link RainbowKeyFactorySpi}).
*
* @param keySpec a {@link RainbowPublicKeySpec}
*/
public BCRainbowPublicKey(RainbowPublicKeySpec keySpec)
{
this(keySpec.getDocLength(), keySpec.getCoeffQuadratic(), keySpec
.getCoeffSingular(), keySpec.getCoeffScalar());
}
public BCRainbowPublicKey(
RainbowPublicKeyParameters params)
{
this(params.getDocLength(), params.getCoeffQuadratic(), params.getCoeffSingular(), params.getCoeffScalar());
}
/**
* @return the docLength
*/
public int getDocLength()
{
return this.docLength;
}
/**
* @return the coeffQuadratic
*/
public short[][] getCoeffQuadratic()
{
return coeffquadratic;
}
/**
* @return the coeffSingular
*/
public short[][] getCoeffSingular()
{
short[][] copy = new short[coeffsingular.length][];
for (int i = 0; i != coeffsingular.length; i++)
{
copy[i] = Arrays.clone(coeffsingular[i]);
}
return copy;
}
/**
* @return the coeffScalar
*/
public short[] getCoeffScalar()
{
return Arrays.clone(coeffscalar);
}
/**
* Compare this Rainbow public key with another object.
*
* @param other the other object
* @return the result of the comparison
*/
public boolean equals(Object other)
{
if (other == null || !(other instanceof BCRainbowPublicKey))
{
return false;
}
BCRainbowPublicKey otherKey = (BCRainbowPublicKey)other;
return docLength == otherKey.getDocLength()
&& RainbowUtil.equals(coeffquadratic, otherKey.getCoeffQuadratic())
&& RainbowUtil.equals(coeffsingular, otherKey.getCoeffSingular())
&& RainbowUtil.equals(coeffscalar, otherKey.getCoeffScalar());
}
public int hashCode()
{
int hash = docLength;
hash = hash * 37 + Arrays.hashCode(coeffquadratic);
hash = hash * 37 + Arrays.hashCode(coeffsingular);
hash = hash * 37 + Arrays.hashCode(coeffscalar);
return hash;
}
/**
* @return name of the algorithm - "Rainbow"
*/
public final String getAlgorithm()
{
return "Rainbow";
}
public String getFormat()
{
return "X.509";
}
public byte[] getEncoded()
{
RainbowPublicKey key = new RainbowPublicKey(docLength, coeffquadratic, coeffsingular, coeffscalar);
AlgorithmIdentifier algorithmIdentifier = new AlgorithmIdentifier(PQCObjectIdentifiers.rainbow, DERNull.INSTANCE);
return KeyUtil.getEncodedSubjectPublicKeyInfo(algorithmIdentifier, key);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy