
org.spongycastle.pqc.jcajce.spec.ECCKeyGenParameterSpec Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of prov Show documentation
Show all versions of prov Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle
intended for the Android platform. Android unfortunately ships with a stripped-down version of
Bouncy Castle, which prevents easy upgrades - Spongy Castle overcomes this and provides a full,
up-to-date version of the Bouncy Castle cryptographic libs.
package org.spongycastle.pqc.jcajce.spec;
import java.security.InvalidParameterException;
import java.security.spec.AlgorithmParameterSpec;
import org.spongycastle.pqc.math.linearalgebra.PolynomialRingGF2;
/**
* This class provides a specification for the parameters that are used by the
* McEliece, McElieceCCA2, and Niederreiter key pair generators.
*
* @see org.spongycastle.pqc.ecc.mceliece.McElieceKeyPairGenerator
* @see org.spongycastle.pqc.ecc.mceliece.McElieceCCA2KeyPairGenerator
* @see org.spongycastle.pqc.ecc.niederreiter.NiederreiterKeyPairGenerator
*/
public class ECCKeyGenParameterSpec
implements AlgorithmParameterSpec
{
/**
* The default extension degree
*/
public static final int DEFAULT_M = 11;
/**
* The default error correcting capability.
*/
public static final int DEFAULT_T = 50;
/**
* extension degree of the finite field GF(2^m)
*/
private int m;
/**
* error correction capability of the code
*/
private int t;
/**
* length of the code
*/
private int n;
/**
* the field polynomial
*/
private int fieldPoly;
/**
* Constructor. Set the default parameters: extension degree.
*/
public ECCKeyGenParameterSpec()
{
this(DEFAULT_M, DEFAULT_T);
}
/**
* Constructor.
*
* @param keysize the length of a Goppa code
* @throws InvalidParameterException if keysize < 1.
*/
public ECCKeyGenParameterSpec(int keysize)
throws InvalidParameterException
{
if (keysize < 1)
{
throw new InvalidParameterException("key size must be positive");
}
m = 0;
n = 1;
while (n < keysize)
{
n <<= 1;
m++;
}
t = n >>> 1;
t /= m;
fieldPoly = PolynomialRingGF2.getIrreduciblePolynomial(m);
}
/**
* Constructor.
*
* @param m degree of the finite field GF(2^m)
* @param t error correction capability of the code
* @throws InvalidParameterException if m < 1 or m > 32 or
* t < 0 or t > n.
*/
public ECCKeyGenParameterSpec(int m, int t)
throws InvalidParameterException
{
if (m < 1)
{
throw new InvalidParameterException("m must be positive");
}
if (m > 32)
{
throw new InvalidParameterException("m is too large");
}
this.m = m;
n = 1 << m;
if (t < 0)
{
throw new InvalidParameterException("t must be positive");
}
if (t > n)
{
throw new InvalidParameterException("t must be less than n = 2^m");
}
this.t = t;
fieldPoly = PolynomialRingGF2.getIrreduciblePolynomial(m);
}
/**
* Constructor.
*
* @param m degree of the finite field GF(2^m)
* @param t error correction capability of the code
* @param poly the field polynomial
* @throws InvalidParameterException if m < 1 or m > 32 or
* t < 0 or t > n or
* poly is not an irreducible field polynomial.
*/
public ECCKeyGenParameterSpec(int m, int t, int poly)
throws InvalidParameterException
{
this.m = m;
if (m < 1)
{
throw new InvalidParameterException("m must be positive");
}
if (m > 32)
{
throw new InvalidParameterException(" m is too large");
}
this.n = 1 << m;
this.t = t;
if (t < 0)
{
throw new InvalidParameterException("t must be positive");
}
if (t > n)
{
throw new InvalidParameterException("t must be less than n = 2^m");
}
if ((PolynomialRingGF2.degree(poly) == m)
&& (PolynomialRingGF2.isIrreducible(poly)))
{
this.fieldPoly = poly;
}
else
{
throw new InvalidParameterException(
"polynomial is not a field polynomial for GF(2^m)");
}
}
/**
* @return the extension degree of the finite field GF(2^m)
*/
public int getM()
{
return m;
}
/**
* @return the length of the code
*/
public int getN()
{
return n;
}
/**
* @return the error correction capability of the code
*/
public int getT()
{
return t;
}
/**
* @return the field polynomial
*/
public int getFieldPoly()
{
return fieldPoly;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy