
org.spongycastle.pqc.jcajce.spec.McEliecePrivateKeySpec Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of prov Show documentation
Show all versions of prov Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle
intended for the Android platform. Android unfortunately ships with a stripped-down version of
Bouncy Castle, which prevents easy upgrades - Spongy Castle overcomes this and provides a full,
up-to-date version of the Bouncy Castle cryptographic libs.
package org.spongycastle.pqc.jcajce.spec;
import java.security.spec.KeySpec;
import org.spongycastle.pqc.math.linearalgebra.GF2Matrix;
import org.spongycastle.pqc.math.linearalgebra.GF2mField;
import org.spongycastle.pqc.math.linearalgebra.Permutation;
import org.spongycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM;
/**
* This class provides a specification for a McEliece private key.
*
* @see org.spongycastle.pqc.ecc.JDKMcEliecePrivateKey.McEliecePrivateKey
* @see KeySpec
*/
public class McEliecePrivateKeySpec
implements KeySpec
{
// the OID of the algorithm
private String oid;
// the length of the code
private int n;
// the dimension of the code, where k >= n - mt
private int k;
// the underlying finite field
private GF2mField field;
// the irreducible Goppa polynomial
private PolynomialGF2mSmallM goppaPoly;
// a k x k random binary non-singular matrix
private GF2Matrix sInv;
// the permutation used to generate the systematic check matrix
private Permutation p1;
// the permutation used to compute the public generator matrix
private Permutation p2;
// the canonical check matrix of the code
private GF2Matrix h;
// the matrix used to compute square roots in (GF(2^m))^t
private PolynomialGF2mSmallM[] qInv;
/**
* Constructor.
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param field the field polynomial defining the finite field
* GF(2m)
* @param goppaPoly the irreducible Goppa polynomial
* @param sInv the matrix S-1
* @param p1 the permutation used to generate the systematic check
* matrix
* @param p2 the permutation used to compute the public generator
* matrix
* @param h the canonical check matrix
* @param qInv the matrix used to compute square roots in
* (GF(2m))t
*/
public McEliecePrivateKeySpec(String oid, int n, int k, GF2mField field,
PolynomialGF2mSmallM goppaPoly, GF2Matrix sInv, Permutation p1,
Permutation p2, GF2Matrix h, PolynomialGF2mSmallM[] qInv)
{
this.oid = oid;
this.k = k;
this.n = n;
this.field = field;
this.goppaPoly = goppaPoly;
this.sInv = sInv;
this.p1 = p1;
this.p2 = p2;
this.h = h;
this.qInv = qInv;
}
/**
* Constructor (used by the {@link McElieceKeyFactory}).
*
* @param oid
* @param n the length of the code
* @param k the dimension of the code
* @param encField the encoded field polynomial defining the finite field
* GF(2m)
* @param encGoppaPoly the encoded irreducible Goppa polynomial
* @param encSInv the encoded matrix S-1
* @param encP1 the encoded permutation used to generate the systematic
* check matrix
* @param encP2 the encoded permutation used to compute the public
* generator matrix
* @param encH the encoded canonical check matrix
* @param encQInv the encoded matrix used to compute square roots in
* (GF(2m))t
*/
public McEliecePrivateKeySpec(String oid, int n, int k, byte[] encField,
byte[] encGoppaPoly, byte[] encSInv, byte[] encP1, byte[] encP2,
byte[] encH, byte[][] encQInv)
{
this.oid = oid;
this.n = n;
this.k = k;
field = new GF2mField(encField);
goppaPoly = new PolynomialGF2mSmallM(field, encGoppaPoly);
sInv = new GF2Matrix(encSInv);
p1 = new Permutation(encP1);
p2 = new Permutation(encP2);
h = new GF2Matrix(encH);
qInv = new PolynomialGF2mSmallM[encQInv.length];
for (int i = 0; i < encQInv.length; i++)
{
qInv[i] = new PolynomialGF2mSmallM(field, encQInv[i]);
}
}
/**
* @return the length of the code
*/
public int getN()
{
return n;
}
/**
* @return the dimension of the code
*/
public int getK()
{
return k;
}
/**
* @return the finite field GF(2m)
*/
public GF2mField getField()
{
return field;
}
/**
* @return the irreducible Goppa polynomial
*/
public PolynomialGF2mSmallM getGoppaPoly()
{
return goppaPoly;
}
/**
* @return the k x k random binary non-singular matrix S^-1
*/
public GF2Matrix getSInv()
{
return sInv;
}
/**
* @return the permutation used to generate the systematic check matrix
*/
public Permutation getP1()
{
return p1;
}
/**
* @return the permutation used to compute the public generator matrix
*/
public Permutation getP2()
{
return p2;
}
/**
* @return the canonical check matrix H
*/
public GF2Matrix getH()
{
return h;
}
/**
* @return the matrix used to compute square roots in
* (GF(2m))t
*/
public PolynomialGF2mSmallM[] getQInv()
{
return qInv;
}
public String getOIDString()
{
return oid;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy