org.spongycastle.crypto.generators.NaccacheSternKeyPairGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scprov-jdk15 Show documentation
Show all versions of scprov-jdk15 Show documentation
Spongy Castle is a package-rename (org.bouncycastle.* to org.spongycastle.*) of Bouncy Castle intended for Android.
Android ships with a stripped-down version of Bouncy Castle - this causes classloader collisions if you try to add
an alternative (updated/complete) Bouncy Castle jar.
This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5.
package org.spongycastle.crypto.generators;
import org.spongycastle.crypto.AsymmetricCipherKeyPair;
import org.spongycastle.crypto.AsymmetricCipherKeyPairGenerator;
import org.spongycastle.crypto.KeyGenerationParameters;
import org.spongycastle.crypto.params.NaccacheSternKeyGenerationParameters;
import org.spongycastle.crypto.params.NaccacheSternKeyParameters;
import org.spongycastle.crypto.params.NaccacheSternPrivateKeyParameters;
import java.math.BigInteger;
import java.security.SecureRandom;
import java.util.Vector;
/**
* Key generation parameters for NaccacheStern cipher. For details on this cipher, please see
*
* http://www.gemplus.com/smart/rd/publications/pdf/NS98pkcs.pdf
*/
public class NaccacheSternKeyPairGenerator
implements AsymmetricCipherKeyPairGenerator
{
private static int[] smallPrimes =
{
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
541, 547, 557
};
private NaccacheSternKeyGenerationParameters param;
private static final BigInteger ONE = BigInteger.valueOf(1); // JDK 1.1 compatibility
/*
* (non-Javadoc)
*
* @see org.spongycastle.crypto.AsymmetricCipherKeyPairGenerator#init(org.spongycastle.crypto.KeyGenerationParameters)
*/
public void init(KeyGenerationParameters param)
{
this.param = (NaccacheSternKeyGenerationParameters)param;
}
/*
* (non-Javadoc)
*
* @see org.spongycastle.crypto.AsymmetricCipherKeyPairGenerator#generateKeyPair()
*/
public AsymmetricCipherKeyPair generateKeyPair()
{
int strength = param.getStrength();
SecureRandom rand = param.getRandom();
int certainty = param.getCertainty();
boolean debug = param.isDebug();
if (debug)
{
System.out.println("Fetching first " + param.getCntSmallPrimes() + " primes.");
}
Vector smallPrimes = findFirstPrimes(param.getCntSmallPrimes());
smallPrimes = permuteList(smallPrimes, rand);
BigInteger u = ONE;
BigInteger v = ONE;
for (int i = 0; i < smallPrimes.size() / 2; i++)
{
u = u.multiply((BigInteger)smallPrimes.elementAt(i));
}
for (int i = smallPrimes.size() / 2; i < smallPrimes.size(); i++)
{
v = v.multiply((BigInteger)smallPrimes.elementAt(i));
}
BigInteger sigma = u.multiply(v);
// n = (2 a u p_ + 1 ) ( 2 b v q_ + 1)
// -> |n| = strength
// |2| = 1 in bits
// -> |a| * |b| = |n| - |u| - |v| - |p_| - |q_| - |2| -|2|
// remainingStrength = strength - sigma.bitLength() - p_.bitLength() -
// q_.bitLength() - 1 -1
int remainingStrength = strength - sigma.bitLength() - 48;
BigInteger a = generatePrime(remainingStrength / 2 + 1, certainty, rand);
BigInteger b = generatePrime(remainingStrength / 2 + 1, certainty, rand);
BigInteger p_;
BigInteger q_;
BigInteger p;
BigInteger q;
long tries = 0;
if (debug)
{
System.out.println("generating p and q");
}
BigInteger _2au = a.multiply(u).shiftLeft(1);
BigInteger _2bv = b.multiply(v).shiftLeft(1);
for (;;)
{
tries++;
p_ = generatePrime(24, certainty, rand);
p = p_.multiply(_2au).add(ONE);
if (!p.isProbablePrime(certainty))
{
continue;
}
for (;;)
{
q_ = generatePrime(24, certainty, rand);
if (p_.equals(q_))
{
continue;
}
q = q_.multiply(_2bv).add(ONE);
if (q.isProbablePrime(certainty))
{
break;
}
}
if (!sigma.gcd(p_.multiply(q_)).equals(ONE))
{
// System.out.println("sigma.gcd(p_.mult(q_)) != 1!\n p_: " + p_
// +"\n q_: "+ q_ );
continue;
}
if (p.multiply(q).bitLength() < strength)
{
if (debug)
{
System.out.println("key size too small. Should be " + strength + " but is actually "
+ p.multiply(q).bitLength());
}
continue;
}
break;
}
if (debug)
{
System.out.println("needed " + tries + " tries to generate p and q.");
}
BigInteger n = p.multiply(q);
BigInteger phi_n = p.subtract(ONE).multiply(q.subtract(ONE));
BigInteger g;
tries = 0;
if (debug)
{
System.out.println("generating g");
}
for (;;)
{
Vector gParts = new Vector();
for (int ind = 0; ind != smallPrimes.size(); ind++)
{
BigInteger i = (BigInteger)smallPrimes.elementAt(ind);
BigInteger e = phi_n.divide(i);
for (;;)
{
tries++;
g = new BigInteger(strength, certainty, rand);
if (g.modPow(e, n).equals(ONE))
{
continue;
}
gParts.addElement(g);
break;
}
}
g = ONE;
for (int i = 0; i < smallPrimes.size(); i++)
{
g = g.multiply(((BigInteger)gParts.elementAt(i)).modPow(sigma.divide((BigInteger)smallPrimes.elementAt(i)), n)).mod(n);
}
// make sure that g is not divisible by p_i or q_i
boolean divisible = false;
for (int i = 0; i < smallPrimes.size(); i++)
{
if (g.modPow(phi_n.divide((BigInteger)smallPrimes.elementAt(i)), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/" + smallPrimes.elementAt(i) + "\n g: " + g);
}
divisible = true;
break;
}
}
if (divisible)
{
continue;
}
// make sure that g has order > phi_n/4
if (g.modPow(phi_n.divide(BigInteger.valueOf(4)), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/4\n g:" + g);
}
continue;
}
if (g.modPow(phi_n.divide(p_), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/p'\n g: " + g);
}
continue;
}
if (g.modPow(phi_n.divide(q_), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/q'\n g: " + g);
}
continue;
}
if (g.modPow(phi_n.divide(a), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/a\n g: " + g);
}
continue;
}
if (g.modPow(phi_n.divide(b), n).equals(ONE))
{
if (debug)
{
System.out.println("g has order phi(n)/b\n g: " + g);
}
continue;
}
break;
}
if (debug)
{
System.out.println("needed " + tries + " tries to generate g");
System.out.println();
System.out.println("found new NaccacheStern cipher variables:");
System.out.println("smallPrimes: " + smallPrimes);
System.out.println("sigma:...... " + sigma + " (" + sigma.bitLength() + " bits)");
System.out.println("a:.......... " + a);
System.out.println("b:.......... " + b);
System.out.println("p':......... " + p_);
System.out.println("q':......... " + q_);
System.out.println("p:.......... " + p);
System.out.println("q:.......... " + q);
System.out.println("n:.......... " + n);
System.out.println("phi(n):..... " + phi_n);
System.out.println("g:.......... " + g);
System.out.println();
}
return new AsymmetricCipherKeyPair(new NaccacheSternKeyParameters(false, g, n, sigma.bitLength()),
new NaccacheSternPrivateKeyParameters(g, n, sigma.bitLength(), smallPrimes, phi_n));
}
private static BigInteger generatePrime(
int bitLength,
int certainty,
SecureRandom rand)
{
BigInteger p_ = new BigInteger(bitLength, certainty, rand);
while (p_.bitLength() != bitLength)
{
p_ = new BigInteger(bitLength, certainty, rand);
}
return p_;
}
/**
* Generates a permuted ArrayList from the original one. The original List
* is not modified
*
* @param arr
* the ArrayList to be permuted
* @param rand
* the source of Randomness for permutation
* @return a new ArrayList with the permuted elements.
*/
private static Vector permuteList(
Vector arr,
SecureRandom rand)
{
Vector retval = new Vector();
Vector tmp = new Vector();
for (int i = 0; i < arr.size(); i++)
{
tmp.addElement(arr.elementAt(i));
}
retval.addElement(tmp.elementAt(0));
tmp.removeElementAt(0);
while (tmp.size() != 0)
{
retval.insertElementAt(tmp.elementAt(0), getInt(rand, retval.size() + 1));
tmp.removeElementAt(0);
}
return retval;
}
private static int getInt(
SecureRandom rand,
int n)
{
if ((n & -n) == n)
{
return (int)((n * (long)(rand.nextInt() & 0x7fffffff)) >> 31);
}
int bits, val;
do
{
bits = rand.nextInt() & 0x7fffffff;
val = bits % n;
}
while (bits - val + (n-1) < 0);
return val;
}
/**
* Finds the first 'count' primes starting with 3
*
* @param count
* the number of primes to find
* @return a vector containing the found primes as Integer
*/
private static Vector findFirstPrimes(
int count)
{
Vector primes = new Vector(count);
for (int i = 0; i != count; i++)
{
primes.addElement(BigInteger.valueOf(smallPrimes[i]));
}
return primes;
}
}