All Downloads are FREE. Search and download functionalities are using the official Maven repository.

javax.media.j3d.Transform3D Maven / Gradle / Ivy

/*
 * Copyright 1996-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

package javax.media.j3d;

import javax.vecmath.AxisAngle4d;
import javax.vecmath.AxisAngle4f;
import javax.vecmath.GMatrix;
import javax.vecmath.Matrix3d;
import javax.vecmath.Matrix3f;
import javax.vecmath.Matrix4d;
import javax.vecmath.Matrix4f;
import javax.vecmath.Point3d;
import javax.vecmath.Point3f;
import javax.vecmath.Point4d;
import javax.vecmath.Quat4d;
import javax.vecmath.Quat4f;
import javax.vecmath.SingularMatrixException;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import javax.vecmath.Vector4d;
import javax.vecmath.Vector4f;

/**
 * A generalized transform object represented internally as a 4x4
 * double-precision floating point matrix.  The mathematical
 * representation is
 * row major, as in traditional matrix mathematics.
 * A Transform3D is used to perform translations, rotations, and
 * scaling and shear effects.

* * A transform has an associated type, and * all type classification is left to the Transform3D object. * A transform will typically have multiple types, unless it is a * general, unclassifiable matrix, in which case it won't be assigned * a type.

* * The Transform3D type is internally computed when the transform * object is constructed and updated any time it is modified. A * matrix will typically have multiple types. For example, the type * associated with an identity matrix is the result of ORing all of * the types, except for ZERO and NEGATIVE_DETERMINANT, together. * There are public methods available to get the ORed type of the * transformation, the sign of the determinant, and the least * general matrix type. The matrix type flags are defined as * follows:

*

    *
  • ZERO - zero matrix. All of the elements in the matrix * have the value 0.
  • *

  • IDENTITY - identity matrix. A matrix with ones on its * main diagonal and zeros every where else.
  • *

  • SCALE - the matrix is a uniform scale matrix - there are * no rotational or translation components.
  • *

  • ORTHOGONAL - the four row vectors that make up an orthogonal * matrix form a basis, meaning that they are mutually orthogonal. * The scale is unity and there are no translation components.
  • *

  • RIGID - the upper 3 X 3 of the matrix is orthogonal, and * there is a translation component-the scale is unity.
  • *

  • CONGRUENT - this is an angle- and length-preserving matrix, * meaning that it can translate, rotate, and reflect about an axis, * and scale by an amount that is uniform in all directions. These * operations preserve the distance between any two points, and the * angle between any two intersecting lines.
  • *

  • AFFINE - an affine matrix can translate, rotate, reflect, * scale anisotropically, and shear. Lines remain straight, and parallel * lines remain parallel, but the angle between intersecting lines can * change.
  • *

* A matrix is also classified by the sign of its determinant:

*

    * NEGATIVE_DETERMINANT - this matrix has a negative determinant. * An orthogonal matrix with a positive determinant is a rotation * matrix. An orthogonal matrix with a negative determinant is a * reflection and rotation matrix.

* The Java 3D model for 4 X 4 transformations is:

*

     * [ m00 m01 m02 m03 ]   [ x ]   [ x' ]
     * [ m10 m11 m12 m13 ] . [ y ] = [ y' ]
     * [ m20 m21 m22 m23 ]   [ z ]   [ z' ]
     * [ m30 m31 m32 m33 ]   [ w ]   [ w' ]
     *
     * x' = m00 . x+m01 . y+m02 . z+m03 . w
     * y' = m10 . x+m11 . y+m12 . z+m13 . w
     * z' = m20 . x+m21 . y+m22 . z+m23 . w
     * w' = m30 . x+m31 . y+m32 . z+m33 . w
     * 

* Note: When transforming a Point3f or a Point3d, the input w is set to * 1. When transforming a Vector3f or Vector3d, the input w is set to 0. */ public class Transform3D { double[] mat = new double[16]; //double[] rot = new double[9]; //double[] scales = new double[3]; // allocate the memory only when it is needed. Following three places will allocate the memory, // void setScaleTranslation(), void computeScales() and void computeScaleRotation() double[] rot = null; double[] scales = null; // Unknown until lazy classification is done private int type = 0; // Dirty bit for classification, this is used // for classify() private static final int AFFINE_BIT = 0x01; private static final int ORTHO_BIT = 0x02; private static final int CONGRUENT_BIT = 0x04; private static final int RIGID_BIT = 0x08; private static final int CLASSIFY_BIT = 0x10; // this is used for scales[], rot[] private static final int SCALE_BIT = 0x20; private static final int ROTATION_BIT = 0x40; // set when SVD renormalization is necessary private static final int SVD_BIT = 0x80; private static final int CLASSIFY_ALL_DIRTY = AFFINE_BIT | ORTHO_BIT | CONGRUENT_BIT | RIGID_BIT | CLASSIFY_BIT; private static final int ROTSCALESVD_DIRTY = SCALE_BIT | ROTATION_BIT | SVD_BIT; private static final int ALL_DIRTY = CLASSIFY_ALL_DIRTY | ROTSCALESVD_DIRTY; private int dirtyBits; boolean autoNormalize = false; // Don't auto normalize by default /* // reused temporaries for compute_svd private boolean svdAllocd =false; private double[] u1 = null; private double[] v1 = null; private double[] t1 = null; // used by both compute_svd and compute_qr private double[] t2 = null; // used by both compute_svd and compute_qr private double[] ts = null; private double[] svdTmp = null; private double[] svdRot = null; private double[] single_values = null; private double[] e = null; private double[] svdScales = null; // from svrReorder private int[] svdOut = null; private double[] svdMag = null; // from compute_qr private double[] cosl = null; private double[] cosr = null; private double[] sinl = null; private double[] sinr = null; private double[] qr_m = null; */ private static final double EPS = 1.110223024E-16; static final double EPSILON = 1.0e-10; static final double EPSILON_ABSOLUTE = 1.0e-5; static final double EPSILON_RELATIVE = 1.0e-4; /** * A zero matrix. */ public static final int ZERO = 0x01; /** * An identity matrix. */ public static final int IDENTITY = 0x02; /** * A Uniform scale matrix with no translation or other * off-diagonal components. */ public static final int SCALE = 0x04; /** * A translation-only matrix with ones on the diagonal. * */ public static final int TRANSLATION = 0x08; /** * The four row vectors that make up an orthogonal matrix form a basis, * meaning that they are mutually orthogonal; an orthogonal matrix with * positive determinant is a pure rotation matrix; a negative * determinant indicates a rotation and a reflection. */ public static final int ORTHOGONAL = 0x10; /** * This matrix is a rotation and a translation with unity scale; * The upper 3x3 of the matrix is orthogonal, and there is a * translation component. */ public static final int RIGID = 0x20; /** * This is an angle and length preserving matrix, meaning that it * can translate, rotate, and reflect * about an axis, and scale by an amount that is uniform in all directions. * These operations preserve the distance between any two points and the * angle between any two intersecting lines. */ public static final int CONGRUENT = 0x40; /** * An affine matrix can translate, rotate, reflect, scale anisotropically, * and shear. Lines remain straight, and parallel lines remain parallel, * but the angle between intersecting lines can change. In order for a * transform to be classified as affine, the 4th row must be: [0, 0, 0, 1]. */ public static final int AFFINE = 0x80; /** * This matrix has a negative determinant; an orthogonal matrix with * a positive determinant is a rotation matrix; an orthogonal matrix * with a negative determinant is a reflection and rotation matrix. */ public static final int NEGATIVE_DETERMINANT = 0x100; /** * The upper 3x3 column vectors that make up an orthogonal * matrix form a basis meaning that they are mutually orthogonal. * It can have non-uniform or zero x/y/z scale as long as * the dot product of any two column is zero. * This one is used by Java3D internal only and should not * expose to the user. */ private static final int ORTHO = 0x40000000; /** * Constructs and initializes a transform from the 4 x 4 matrix. The * type of the constructed transform will be classified automatically. * @param m1 the 4 x 4 transformation matrix */ public Transform3D(Matrix4f m1) { set(m1); } /** * Constructs and initializes a transform from the 4 x 4 matrix. The * type of the constructed transform will be classified automatically. * @param m1 the 4 x 4 transformation matrix */ public Transform3D(Matrix4d m1) { set(m1); } /** * Constructs and initializes a transform from the Transform3D object. * @param t1 the transformation object to be copied */ public Transform3D(Transform3D t1) { set(t1); } /** * Constructs and initializes a transform to the identity matrix. */ public Transform3D() { setIdentity(); // this will also classify the matrix } /** * Constructs and initializes a transform from the float array of * length 16; the top row of the matrix is initialized to the first * four elements of the array, and so on. The type of the transform * object is classified internally. * @param matrix a float array of 16 */ public Transform3D(float[] matrix) { set(matrix); } /** * Constructs and initializes a transform from the double precision array * of length 16; the top row of the matrix is initialized to the first * four elements of the array, and so on. The type of the transform is * classified internally. * @param matrix a float array of 16 */ public Transform3D(double[] matrix) { set(matrix); } /** * Constructs and initializes a transform from the quaternion, * translation, and scale values. The scale is applied only to the * rotational components of the matrix (upper 3 x 3) and not to the * translational components of the matrix. * @param q1 the quaternion value representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Quat4d q1, Vector3d t1, double s) { set(q1, t1, s); } /** * Constructs and initializes a transform from the quaternion, * translation, and scale values. The scale is applied only to the * rotational components of the matrix (upper 3 x 3) and not to the * translational components of the matrix. * @param q1 the quaternion value representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Quat4f q1, Vector3d t1, double s) { set(q1, t1, s); } /** * Constructs and initializes a transform from the quaternion, * translation, and scale values. The scale is applied only to the * rotational components of the matrix (upper 3 x 3) and not to the * translational components of the matrix. * @param q1 the quaternion value representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Quat4f q1, Vector3f t1, float s) { set(q1, t1, s); } /** * Constructs a transform and initializes it to the upper 4 x 4 * of the GMatrix argument. If the parameter matrix is * smaller than 4 x 4, the remaining elements in the transform matrix are * assigned to zero. * @param m1 the GMatrix */ public Transform3D(GMatrix m1) { set(m1); } /** * Constructs and initializes a transform from the rotation matrix, * translation, and scale values. The scale is applied only to the * rotational component of the matrix (upper 3x3) and not to the * translational component of the matrix. * @param m1 the rotation matrix representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Matrix3f m1, Vector3d t1, double s) { set(m1, t1, s); } /** * Constructs and initializes a transform from the rotation matrix, * translation, and scale values. The scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components of the matrix. * @param m1 the rotation matrix representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Matrix3d m1, Vector3d t1, double s) { set(m1, t1, s); } /** * Constructs and initializes a transform from the rotation matrix, * translation, and scale values. The scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components of the matrix. * @param m1 the rotation matrix representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Transform3D(Matrix3f m1, Vector3f t1, float s) { set(m1, t1, s); } /** * Returns the type of this matrix as an or'ed bitmask of * of all of the type classifications to which it belongs. * @return or'ed bitmask of all of the type classifications * of this transform */ public final int getType() { if ((dirtyBits & CLASSIFY_BIT) != 0) { classify(); } // clear ORTHO bit which only use internally return (type & ~ORTHO); } // True if type is ORTHO // Since ORTHO didn't take into account the last row. final boolean isOrtho() { if ((dirtyBits & ORTHO_BIT) != 0) { if ((almostZero(mat[0]*mat[2] + mat[4]*mat[6] + mat[8]*mat[10]) && almostZero(mat[0]*mat[1] + mat[4]*mat[5] + mat[8]*mat[9]) && almostZero(mat[1]*mat[2] + mat[5]*mat[6] + mat[9]*mat[10]))) { type |= ORTHO; dirtyBits &= ~ORTHO_BIT; return true; } else { type &= ~ORTHO; dirtyBits &= ~ORTHO_BIT; return false; } } return ((type & ORTHO) != 0); } final boolean isCongruent() { if ((dirtyBits & CONGRUENT_BIT) != 0) { // This will also classify AFFINE classifyRigid(); } return ((type & CONGRUENT) != 0); } final boolean isAffine() { if ((dirtyBits & AFFINE_BIT) != 0) { classifyAffine(); } return ((type & AFFINE) != 0); } final boolean isRigid() { if ((dirtyBits & RIGID_BIT) != 0) { // This will also classify AFFINE & CONGRUENT if ((dirtyBits & CONGRUENT_BIT) != 0) { classifyRigid(); } else { if ((type & CONGRUENT) != 0) { // Matrix is Congruent, need only // to check scale double s; if ((dirtyBits & SCALE_BIT) != 0){ s = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; // Note that // scales[0] = sqrt(s); // but since sqrt(1) = 1, // we don't need to do s = sqrt(s) here. } else { if(scales == null) scales = new double[3]; s = scales[0]; } if (almostOne(s)) { type |= RIGID; } else { type &= ~RIGID; } } else { // Not even congruent, so isRigid must be false type &= ~RIGID; } dirtyBits &= ~RIGID_BIT; } } return ((type & RIGID) != 0); } /** * Returns the least general type of this matrix; the order of * generality from least to most is: ZERO, IDENTITY, * SCALE/TRANSLATION, ORTHOGONAL, RIGID, CONGRUENT, AFFINE. * If the matrix is ORTHOGONAL, calling the method * getDeterminantSign() will yield more information. * @return the least general matrix type */ public final int getBestType() { getType(); // force classify if necessary if ((type & ZERO) != 0 ) return ZERO; if ((type & IDENTITY) != 0 ) return IDENTITY; if ((type & SCALE) != 0 ) return SCALE; if ((type & TRANSLATION) != 0 ) return TRANSLATION; if ((type & ORTHOGONAL) != 0 ) return ORTHOGONAL; if ((type & RIGID) != 0 ) return RIGID; if ((type & CONGRUENT) != 0 ) return CONGRUENT; if ((type & AFFINE) != 0 ) return AFFINE; if ((type & NEGATIVE_DETERMINANT) != 0 ) return NEGATIVE_DETERMINANT; return 0; } /* private void print_type() { if ((type & ZERO) > 0 ) System.err.print(" ZERO"); if ((type & IDENTITY) > 0 ) System.err.print(" IDENTITY"); if ((type & SCALE) > 0 ) System.err.print(" SCALE"); if ((type & TRANSLATION) > 0 ) System.err.print(" TRANSLATION"); if ((type & ORTHOGONAL) > 0 ) System.err.print(" ORTHOGONAL"); if ((type & RIGID) > 0 ) System.err.print(" RIGID"); if ((type & CONGRUENT) > 0 ) System.err.print(" CONGRUENT"); if ((type & AFFINE) > 0 ) System.err.print(" AFFINE"); if ((type & NEGATIVE_DETERMINANT) > 0 ) System.err.print(" NEGATIVE_DETERMINANT"); } */ /** * Returns the sign of the determinant of this matrix; a return value * of true indicates a non-negative determinant; a return value of false * indicates a negative determinant. A value of true will be returned if * the determinant is NaN. In general, an orthogonal matrix * with a positive determinant is a pure rotation matrix; an orthogonal * matrix with a negative determinant is a both a rotation and a * reflection matrix. * @return determinant sign : true means non-negative, false means negative */ public final boolean getDeterminantSign() { double det = determinant(); if (Double.isNaN(det)) { return true; } return det >= 0; } /** * Sets a flag that enables or disables automatic SVD * normalization. If this flag is enabled, an automatic SVD * normalization of the rotational components (upper 3x3) of this * matrix is done after every subsequent matrix operation that * modifies this matrix. This is functionally equivalent to * calling normalize() after every subsequent call, but may be * less computationally expensive. * The default value for this parameter is false. * @param autoNormalize the boolean state of auto normalization */ public final void setAutoNormalize(boolean autoNormalize) { this.autoNormalize = autoNormalize; if (autoNormalize) { normalize(); } } /** * Returns the state of auto-normalization. * @return boolean state of auto-normalization */ public final boolean getAutoNormalize() { return this.autoNormalize; } /** * Transforms the point parameter with this transform and * places the result into pointOut. The fourth element of the * point input paramter is assumed to be one. * @param point the input point to be transformed * @param pointOut the transformed point */ void transform(Point3d point, Point4d pointOut) { pointOut.x = mat[0]*point.x + mat[1]*point.y + mat[2]*point.z + mat[3]; pointOut.y = mat[4]*point.x + mat[5]*point.y + mat[6]*point.z + mat[7]; pointOut.z = mat[8]*point.x + mat[9]*point.y + mat[10]*point.z + mat[11]; pointOut.w = mat[12]*point.x + mat[13]*point.y + mat[14]*point.z + mat[15]; } private static final boolean almostZero(double a) { return ((a < EPSILON_ABSOLUTE) && (a > -EPSILON_ABSOLUTE)); } private static final boolean almostOne(double a) { return ((a < 1+EPSILON_ABSOLUTE) && (a > 1-EPSILON_ABSOLUTE)); } private static final boolean almostEqual(double a, double b) { double diff = a-b; if (diff >= 0) { if (diff < EPSILON) { return true; } // a > b if ((b > 0) || (a > -b)) { return (diff < EPSILON_RELATIVE*a); } else { return (diff < -EPSILON_RELATIVE*b); } } else { if (diff > -EPSILON) { return true; } // a < b if ((b < 0) || (-a > b)) { return (diff > EPSILON_RELATIVE*a); } else { return (diff > -EPSILON_RELATIVE*b); } } } private final void classifyAffine() { if (!isInfOrNaN() && almostZero(mat[12]) && almostZero(mat[13]) && almostZero(mat[14]) && almostOne(mat[15])) { type |= AFFINE; } else { type &= ~AFFINE; } dirtyBits &= ~AFFINE_BIT; } // same amount of work to classify rigid and congruent private final void classifyRigid() { if ((dirtyBits & AFFINE_BIT) != 0) { // should not touch ORTHO bit type &= ORTHO; classifyAffine(); } else { // keep the affine bit if there is one // and clear the others (CONGRUENT/RIGID) bit type &= (ORTHO | AFFINE); } if ((type & AFFINE) != 0) { // checking orthogonal condition if (isOrtho()) { if ((dirtyBits & SCALE_BIT) != 0) { double s0 = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; double s1 = mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]; if (almostEqual(s0, s1)) { double s2 = mat[2]*mat[2] + mat[6]*mat[6] + mat[10]*mat[10]; if (almostEqual(s2, s0)) { type |= CONGRUENT; // Note that scales[0] = sqrt(s0); if (almostOne(s0)) { type |= RIGID; } } } } else { if(scales == null) scales = new double[3]; double s = scales[0]; if (almostEqual(s, scales[1]) && almostEqual(s, scales[2])) { type |= CONGRUENT; if (almostOne(s)) { type |= RIGID; } } } } } dirtyBits &= (~RIGID_BIT | ~CONGRUENT_BIT); } /** * Classifies a matrix. */ private final void classify() { if ((dirtyBits & (RIGID_BIT|AFFINE_BIT|CONGRUENT_BIT)) != 0) { // Test for RIGID, CONGRUENT, AFFINE. classifyRigid(); } // Test for ZERO, IDENTITY, SCALE, TRANSLATION, // ORTHOGONAL, NEGATIVE_DETERMINANT if ((type & AFFINE) != 0) { if ((type & CONGRUENT) != 0) { if ((type & RIGID) != 0) { if (zeroTranslation()) { type |= ORTHOGONAL; if (rotateZero()) { // mat[0], mat[5], mat[10] can be only be // 1 or -1 when reach here if ((mat[0] > 0) && (mat[5] > 0) && (mat[10] > 0)) { type |= IDENTITY|SCALE|TRANSLATION; } } } else { if (rotateZero()) { type |= TRANSLATION; } } } else { // uniform scale if (zeroTranslation() && rotateZero()) { type |= SCALE; } } } } else { // last row is not (0, 0, 0, 1) if (almostZero(mat[12]) && almostZero(mat[13]) && almostZero(mat[14]) && almostZero(mat[15]) && zeroTranslation() && rotateZero() && almostZero(mat[0]) && almostZero(mat[5]) && almostZero(mat[10])) { type |= ZERO; } } if (!getDeterminantSign()) { type |= NEGATIVE_DETERMINANT; } dirtyBits &= ~CLASSIFY_BIT; } final boolean zeroTranslation() { return (almostZero(mat[3]) && almostZero(mat[7]) && almostZero(mat[11])); } final boolean rotateZero() { return (almostZero(mat[1]) && almostZero(mat[2]) && almostZero(mat[4]) && almostZero(mat[6]) && almostZero(mat[8]) && almostZero(mat[9])); } /** * Returns the matrix elements of this transform as a string. * @return the matrix elements of this transform */ @Override public String toString() { // also, print classification? return mat[0] + ", " + mat[1] + ", " + mat[2] + ", " + mat[3] + "\n" + mat[4] + ", " + mat[5] + ", " + mat[6] + ", " + mat[7] + "\n" + mat[8] + ", " + mat[9] + ", " + mat[10] + ", " + mat[11] + "\n" + mat[12] + ", " + mat[13] + ", " + mat[14] + ", " + mat[15] + "\n"; } /** * Sets this transform to the identity matrix. */ public final void setIdentity() { mat[0] = 1.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = 0.0; mat[4] = 0.0; mat[5] = 1.0; mat[6] = 0.0; mat[7] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 1.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; type = IDENTITY | SCALE | ORTHOGONAL | RIGID | CONGRUENT | AFFINE | TRANSLATION | ORTHO; dirtyBits = SCALE_BIT | ROTATION_BIT; // No need to set SVD_BIT } /** * Sets this transform to all zeros. */ public final void setZero() { mat[0] = 0.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = 0.0; mat[4] = 0.0; mat[5] = 0.0; mat[6] = 0.0; mat[7] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 0.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 0.0; type = ZERO | ORTHO; dirtyBits = SCALE_BIT | ROTATION_BIT; } /** * Adds this transform to transform t1 and places the result into * this: this = this + t1. * @param t1 the transform to be added to this transform */ public final void add(Transform3D t1) { for (int i=0 ; i<16 ; i++) { mat[i] += t1.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Adds transforms t1 and t2 and places the result into this transform. * @param t1 the transform to be added * @param t2 the transform to be added */ public final void add(Transform3D t1, Transform3D t2) { for (int i=0 ; i<16 ; i++) { mat[i] = t1.mat[i] + t2.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Subtracts transform t1 from this transform and places the result * into this: this = this - t1. * @param t1 the transform to be subtracted from this transform */ public final void sub(Transform3D t1) { for (int i=0 ; i<16 ; i++) { mat[i] -= t1.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Subtracts transform t2 from transform t1 and places the result into * this: this = t1 - t2. * @param t1 the left transform * @param t2 the right transform */ public final void sub(Transform3D t1, Transform3D t2) { for (int i=0 ; i<16 ; i++) { mat[i] = t1.mat[i] - t2.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Transposes this matrix in place. */ public final void transpose() { double temp; temp = mat[4]; mat[4] = mat[1]; mat[1] = temp; temp = mat[8]; mat[8] = mat[2]; mat[2] = temp; temp = mat[12]; mat[12] = mat[3]; mat[3] = temp; temp = mat[9]; mat[9] = mat[6]; mat[6] = temp; temp = mat[13]; mat[13] = mat[7]; mat[7] = temp; temp = mat[14]; mat[14] = mat[11]; mat[11] = temp; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Transposes transform t1 and places the value into this transform. * The transform t1 is not modified. * @param t1 the transform whose transpose is placed into this transform */ public final void transpose(Transform3D t1) { if (this != t1) { mat[0] = t1.mat[0]; mat[1] = t1.mat[4]; mat[2] = t1.mat[8]; mat[3] = t1.mat[12]; mat[4] = t1.mat[1]; mat[5] = t1.mat[5]; mat[6] = t1.mat[9]; mat[7] = t1.mat[13]; mat[8] = t1.mat[2]; mat[9] = t1.mat[6]; mat[10] = t1.mat[10]; mat[11] = t1.mat[14]; mat[12] = t1.mat[3]; mat[13] = t1.mat[7]; mat[14] = t1.mat[11]; mat[15] = t1.mat[15]; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } else { this.transpose(); } } /** * Sets the value of this transform to the matrix conversion of the * single precision quaternion argument; the non-rotational * components are set as if this were an identity matrix. * @param q1 the quaternion to be converted */ public final void set(Quat4f q1) { mat[0] = (1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z); mat[4] = (2.0f*(q1.x*q1.y + q1.w*q1.z)); mat[8] = (2.0f*(q1.x*q1.z - q1.w*q1.y)); mat[1] = (2.0f*(q1.x*q1.y - q1.w*q1.z)); mat[5] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z); mat[9] = (2.0f*(q1.y*q1.z + q1.w*q1.x)); mat[2] = (2.0f*(q1.x*q1.z + q1.w*q1.y)); mat[6] = (2.0f*(q1.y*q1.z - q1.w*q1.x)); mat[10] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y); mat[3] = 0.0; mat[7] = 0.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(q1)) { dirtyBits = ALL_DIRTY; return; } dirtyBits = CLASSIFY_BIT | SCALE_BIT | ROTATION_BIT; type = RIGID | CONGRUENT | AFFINE | ORTHO; } /** * Sets the value of this transform to the matrix conversion of the * double precision quaternion argument; the non-rotational * components are set as if this were an identity matrix. * @param q1 the quaternion to be converted */ public final void set(Quat4d q1) { mat[0] = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); mat[4] = (2.0*(q1.x*q1.y + q1.w*q1.z)); mat[8] = (2.0*(q1.x*q1.z - q1.w*q1.y)); mat[1] = (2.0*(q1.x*q1.y - q1.w*q1.z)); mat[5] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); mat[9] = (2.0*(q1.y*q1.z + q1.w*q1.x)); mat[2] = (2.0*(q1.x*q1.z + q1.w*q1.y)); mat[6] = (2.0*(q1.y*q1.z - q1.w*q1.x)); mat[10] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); mat[3] = 0.0; mat[7] = 0.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(q1)) { dirtyBits = ALL_DIRTY; return; } dirtyBits = CLASSIFY_BIT | SCALE_BIT | ROTATION_BIT; type = RIGID | CONGRUENT | AFFINE | ORTHO; } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix values in the double precision Matrix3d argument; the other * elements of this transform are unchanged; any pre-existing scale * will be preserved; the argument matrix m1 will be checked for proper * normalization when this transform is internally classified. * @param m1 the double precision 3x3 matrix */ public final void setRotation(Matrix3d m1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } mat[0] = m1.m00*scales[0]; mat[1] = m1.m01*scales[1]; mat[2] = m1.m02*scales[2]; mat[4] = m1.m10*scales[0]; mat[5] = m1.m11*scales[1]; mat[6] = m1.m12*scales[2]; mat[8] = m1.m20*scales[0]; mat[9] = m1.m21*scales[1]; mat[10]= m1.m22*scales[2]; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { // the matrix pass in may not normalize normalize(); } } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix values in the single precision Matrix3f argument; the other * elements of this transform are unchanged; any pre-existing scale * will be preserved; the argument matrix m1 will be checked for proper * normalization when this transform is internally classified. * @param m1 the single precision 3x3 matrix */ public final void setRotation(Matrix3f m1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } mat[0] = m1.m00*scales[0]; mat[1] = m1.m01*scales[1]; mat[2] = m1.m02*scales[2]; mat[4] = m1.m10*scales[0]; mat[5] = m1.m11*scales[1]; mat[6] = m1.m12*scales[2]; mat[8] = m1.m20*scales[0]; mat[9] = m1.m21*scales[1]; mat[10]= m1.m22*scales[2]; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix equivalent values of the quaternion argument; the other * elements of this transform are unchanged; any pre-existing scale * in the transform is preserved. * @param q1 the quaternion that specifies the rotation */ public final void setRotation(Quat4f q1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } mat[0] = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z)*scales[0]; mat[4] = (2.0*(q1.x*q1.y + q1.w*q1.z))*scales[0]; mat[8] = (2.0*(q1.x*q1.z - q1.w*q1.y))*scales[0]; mat[1] = (2.0*(q1.x*q1.y - q1.w*q1.z))*scales[1]; mat[5] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z)*scales[1]; mat[9] = (2.0*(q1.y * q1.z + q1.w * q1.x))*scales[1]; mat[2] = (2.0*(q1.x*q1.z + q1.w*q1.y))*scales[2]; mat[6] = (2.0*(q1.y*q1.z - q1.w*q1.x))*scales[2]; mat[10] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y)*scales[2]; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(q1)) { dirtyBits = ALL_DIRTY; return; } dirtyBits |= CLASSIFY_BIT | ROTATION_BIT; dirtyBits &= ~ORTHO_BIT; type |= ORTHO; type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix equivalent values of the quaternion argument; the other * elements of this transform are unchanged; any pre-existing scale * in the transform is preserved. * @param q1 the quaternion that specifies the rotation */ public final void setRotation(Quat4d q1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } mat[0] = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z)*scales[0]; mat[4] = (2.0*(q1.x*q1.y + q1.w*q1.z))*scales[0]; mat[8] = (2.0*(q1.x*q1.z - q1.w*q1.y))*scales[0]; mat[1] = (2.0*(q1.x*q1.y - q1.w*q1.z))*scales[1]; mat[5] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z)*scales[1]; mat[9] = (2.0*(q1.y * q1.z + q1.w * q1.x))*scales[1]; mat[2] = (2.0*(q1.x*q1.z + q1.w*q1.y))*scales[2]; mat[6] = (2.0*(q1.y*q1.z - q1.w*q1.x))*scales[2]; mat[10] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y)*scales[2]; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(q1)) { dirtyBits = ALL_DIRTY; return; } dirtyBits |= CLASSIFY_BIT | ROTATION_BIT; dirtyBits &= ~ORTHO_BIT; type |= ORTHO; type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); } /** * Sets the value of this transform to the matrix conversion * of the single precision axis-angle argument; all of the matrix * values are modified. * @param a1 the axis-angle to be converted (x, y, z, angle) */ public final void set(AxisAngle4f a1) { double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if (almostZero(mag)) { setIdentity(); } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin((double)a1.angle); double cosTheta = Math.cos((double)a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; mat[0] = t * ax * ax + cosTheta; mat[1] = t * xy - sinTheta * az; mat[2] = t * xz + sinTheta * ay; mat[3] = 0.0; mat[4] = t * xy + sinTheta * az; mat[5] = t * ay * ay + cosTheta; mat[6] = t * yz - sinTheta * ax; mat[7] = 0.0; mat[8] = t * xz - sinTheta * ay; mat[9] = t * yz + sinTheta * ax; mat[10] = t * az * az + cosTheta; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(a1)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } } /** * Sets the value of this transform to the matrix conversion * of the double precision axis-angle argument; all of the matrix * values are modified. * @param a1 the axis-angle to be converted (x, y, z, angle) */ public final void set(AxisAngle4d a1) { double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if (almostZero(mag)) { setIdentity(); } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin(a1.angle); double cosTheta = Math.cos(a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; mat[0] = t * ax * ax + cosTheta; mat[1] = t * xy - sinTheta * az; mat[2] = t * xz + sinTheta * ay; mat[3] = 0.0; mat[4] = t * xy + sinTheta * az; mat[5] = t * ay * ay + cosTheta; mat[6] = t * yz - sinTheta * ax; mat[7] = 0.0; mat[8] = t * xz - sinTheta * ay; mat[9] = t * yz + sinTheta * ax; mat[10] = t * az * az + cosTheta; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(a1)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix equivalent values of the axis-angle argument; the other * elements of this transform are unchanged; any pre-existing scale * in the transform is preserved. * @param a1 the axis-angle to be converted (x, y, z, angle) */ public final void setRotation(AxisAngle4d a1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if (almostZero(mag)) { mat[0] = scales[0]; mat[1] = 0.0; mat[2] = 0.0; mat[4] = 0.0; mat[5] = scales[1]; mat[6] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = scales[2]; } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin(a1.angle); double cosTheta = Math.cos(a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; mat[0] = (t * ax * ax + cosTheta)*scales[0]; mat[1] = (t * xy - sinTheta * az)*scales[1]; mat[2] = (t * xz + sinTheta * ay)*scales[2]; mat[4] = (t * xy + sinTheta * az)*scales[0]; mat[5] = (t * ay * ay + cosTheta)*scales[1]; mat[6] = (t * yz - sinTheta * ax)*scales[2]; mat[8] = (t * xz - sinTheta * ay)*scales[0]; mat[9] = (t * yz + sinTheta * ax)*scales[1]; mat[10] = (t * az * az + cosTheta)*scales[2]; } // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(a1)) { dirtyBits = ALL_DIRTY; return; } // Rigid remain rigid, congruent remain congruent after // set rotation dirtyBits |= CLASSIFY_BIT | ROTATION_BIT; dirtyBits &= ~ORTHO_BIT; type |= ORTHO; type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix equivalent values of the axis-angle argument; the other * elements of this transform are unchanged; any pre-existing scale * in the transform is preserved. * @param a1 the axis-angle to be converted (x, y, z, angle) */ public final void setRotation(AxisAngle4f a1) { if ((dirtyBits & SCALE_BIT)!= 0) { computeScales(false); } double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if (almostZero(mag)) { mat[0] = scales[0]; mat[1] = 0.0; mat[2] = 0.0; mat[4] = 0.0; mat[5] = scales[1]; mat[6] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = scales[2]; } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin(a1.angle); double cosTheta = Math.cos(a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; mat[0] = (t * ax * ax + cosTheta)*scales[0]; mat[1] = (t * xy - sinTheta * az)*scales[1]; mat[2] = (t * xz + sinTheta * ay)*scales[2]; mat[4] = (t * xy + sinTheta * az)*scales[0]; mat[5] = (t * ay * ay + cosTheta)*scales[1]; mat[6] = (t * yz - sinTheta * ax)*scales[2]; mat[8] = (t * xz - sinTheta * ay)*scales[0]; mat[9] = (t * yz + sinTheta * ax)*scales[1]; mat[10] = (t * az * az + cosTheta)*scales[2]; } // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(a1)) { dirtyBits = ALL_DIRTY; return; } // Rigid remain rigid, congruent remain congruent after // set rotation dirtyBits |= CLASSIFY_BIT | ROTATION_BIT; dirtyBits &= (~ORTHO_BIT | ~SVD_BIT); type |= ORTHO; type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); } /** * Sets the value of this transform to a counter clockwise rotation * about the x axis. All of the non-rotational components are set as * if this were an identity matrix. * @param angle the angle to rotate about the X axis in radians */ public void rotX(double angle) { double sinAngle = Math.sin(angle); double cosAngle = Math.cos(angle); mat[0] = 1.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = 0.0; mat[4] = 0.0; mat[5] = cosAngle; mat[6] = -sinAngle; mat[7] = 0.0; mat[8] = 0.0; mat[9] = sinAngle; mat[10] = cosAngle; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(angle)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } /** * Sets the value of this transform to a counter clockwise rotation about * the y axis. All of the non-rotational components are set as if this * were an identity matrix. * @param angle the angle to rotate about the Y axis in radians */ public void rotY(double angle) { double sinAngle = Math.sin(angle); double cosAngle = Math.cos(angle); mat[0] = cosAngle; mat[1] = 0.0; mat[2] = sinAngle; mat[3] = 0.0; mat[4] = 0.0; mat[5] = 1.0; mat[6] = 0.0; mat[7] = 0.0; mat[8] = -sinAngle; mat[9] = 0.0; mat[10] = cosAngle; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(angle)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } /** * Sets the value of this transform to a counter clockwise rotation * about the z axis. All of the non-rotational components are set * as if this were an identity matrix. * @param angle the angle to rotate about the Z axis in radians */ public void rotZ(double angle) { double sinAngle = Math.sin(angle); double cosAngle = Math.cos(angle); mat[0] = cosAngle; mat[1] = -sinAngle; mat[2] = 0.0; mat[3] = 0.0; mat[4] = sinAngle; mat[5] = cosAngle; mat[6] = 0.0; mat[7] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 1.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(angle)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } /** * Sets the translational value of this matrix to the Vector3f parameter * values, and sets the other components of the matrix as if this * transform were an identity matrix. * @param trans the translational component */ public final void set(Vector3f trans) { mat[0] = 1.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = trans.x; mat[4] = 0.0; mat[5] = 1.0; mat[6] = 0.0; mat[7] = trans.y; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 1.0; mat[11] = trans.z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(trans)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } /** * Sets the translational value of this matrix to the Vector3d paramter * values, and sets the other components of the matrix as if this * transform were an identity matrix. * @param trans the translational component */ public final void set(Vector3d trans) { mat[0] = 1.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = trans.x; mat[4] = 0.0; mat[5] = 1.0; mat[6] = 0.0; mat[7] = trans.y; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 1.0; mat[11] = trans.z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(trans)) { dirtyBits = ALL_DIRTY; return; } type = CONGRUENT | AFFINE | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | SCALE_BIT; } /** * Sets the scale component of the current transform; any existing * scale is first factored out of the existing transform before * the new scale is applied. * @param scale the new scale amount */ public final void setScale(double scale) { if ((dirtyBits & ROTATION_BIT)!= 0) { computeScaleRotation(false); } scales[0] = scales[1] = scales[2] = scale; mat[0] = rot[0]*scale; mat[1] = rot[1]*scale; mat[2] = rot[2]*scale; mat[4] = rot[3]*scale; mat[5] = rot[4]*scale; mat[6] = rot[5]*scale; mat[8] = rot[6]*scale; mat[9] = rot[7]*scale; mat[10] = rot[8]*scale; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(scale)) { dirtyBits = ALL_DIRTY; return; } dirtyBits |= (CLASSIFY_BIT | RIGID_BIT | CONGRUENT_BIT | SVD_BIT); dirtyBits &= ~SCALE_BIT; } /** * Sets the possibly non-uniform scale component of the current * transform; any existing scale is first factored out of the * existing transform before the new scale is applied. * @param scale the new x,y,z scale values */ public final void setScale(Vector3d scale) { if ((dirtyBits & ROTATION_BIT)!= 0) { computeScaleRotation(false); } scales[0] = scale.x; scales[1] = scale.y; scales[2] = scale.z; mat[0] = rot[0]*scale.x; mat[1] = rot[1]*scale.y; mat[2] = rot[2]*scale.z; mat[4] = rot[3]*scale.x; mat[5] = rot[4]*scale.y; mat[6] = rot[5]*scale.z; mat[8] = rot[6]*scale.x; mat[9] = rot[7]*scale.y; mat[10] = rot[8]*scale.z; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(scale)) { dirtyBits = ALL_DIRTY; return; } dirtyBits |= (CLASSIFY_BIT | RIGID_BIT | CONGRUENT_BIT | SVD_BIT); dirtyBits &= ~SCALE_BIT; } /** * Replaces the current transform with a non-uniform scale transform. * All values of the existing transform are replaced. * @param xScale the new X scale amount * @param yScale the new Y scale amount * @param zScale the new Z scale amount * @deprecated Use setScale(Vector3d) instead of setNonUniformScale; * note that the setScale only modifies the scale component */ public final void setNonUniformScale(double xScale, double yScale, double zScale) { if(scales == null) scales = new double[3]; scales[0] = xScale; scales[1] = yScale; scales[2] = zScale; mat[0] = xScale; mat[1] = 0.0; mat[2] = 0.0; mat[3] = 0.0; mat[4] = 0.0; mat[5] = yScale; mat[6] = 0.0; mat[7] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = zScale; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Replaces the translational components of this transform to the values * in the Vector3f argument; the other values of this transform are not * modified. * @param trans the translational component */ public final void setTranslation(Vector3f trans) { mat[3] = trans.x; mat[7] = trans.y; mat[11] = trans.z; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(trans)) { dirtyBits = ALL_DIRTY; return; } // Only preserve CONGRUENT, RIGID, ORTHO type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); dirtyBits |= CLASSIFY_BIT; } /** * Replaces the translational components of this transform to the values * in the Vector3d argument; the other values of this transform are not * modified. * @param trans the translational component */ public final void setTranslation(Vector3d trans) { mat[3] = trans.x; mat[7] = trans.y; mat[11] = trans.z; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(trans)) { dirtyBits = ALL_DIRTY; return; } type &= ~(ORTHOGONAL|IDENTITY|SCALE|TRANSLATION|SCALE|ZERO); dirtyBits |= CLASSIFY_BIT; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4d q1, Vector3d t1, double s) { if(scales == null) scales = new double[3]; scales[0] = scales[1] = scales[2] = s; mat[0] = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z)*s; mat[4] = (2.0*(q1.x*q1.y + q1.w*q1.z))*s; mat[8] = (2.0*(q1.x*q1.z - q1.w*q1.y))*s; mat[1] = (2.0*(q1.x*q1.y - q1.w*q1.z))*s; mat[5] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z)*s; mat[9] = (2.0*(q1.y*q1.z + q1.w*q1.x))*s; mat[2] = (2.0*(q1.x*q1.z + q1.w*q1.y))*s; mat[6] = (2.0*(q1.y*q1.z - q1.w*q1.x))*s; mat[10] = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y)*s; mat[3] = t1.x; mat[7] = t1.y; mat[11] = t1.z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4f q1, Vector3d t1, double s) { if(scales == null) scales = new double[3]; scales[0] = scales[1] = scales[2] = s; mat[0] = (1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*s; mat[4] = (2.0f*(q1.x*q1.y + q1.w*q1.z))*s; mat[8] = (2.0f*(q1.x*q1.z - q1.w*q1.y))*s; mat[1] = (2.0f*(q1.x*q1.y - q1.w*q1.z))*s; mat[5] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*s; mat[9] = (2.0f*(q1.y*q1.z + q1.w*q1.x))*s; mat[2] = (2.0f*(q1.x*q1.z + q1.w*q1.y))*s; mat[6] = (2.0f*(q1.y*q1.z - q1.w*q1.x))*s; mat[10] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*s; mat[3] = t1.x; mat[7] = t1.y; mat[11] = t1.z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4f q1, Vector3f t1, float s) { if(scales == null) scales = new double[3]; scales[0] = scales[1] = scales[2] = s; mat[0] = (1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*s; mat[4] = (2.0f*(q1.x*q1.y + q1.w*q1.z))*s; mat[8] = (2.0f*(q1.x*q1.z - q1.w*q1.y))*s; mat[1] = (2.0f*(q1.x*q1.y - q1.w*q1.z))*s; mat[5] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*s; mat[9] = (2.0f*(q1.y*q1.z + q1.w*q1.x))*s; mat[2] = (2.0f*(q1.x*q1.z + q1.w*q1.y))*s; mat[6] = (2.0f*(q1.y*q1.z - q1.w*q1.x))*s; mat[10] = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*s; mat[3] = t1.x; mat[7] = t1.y; mat[11] = t1.z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Sets the value of this matrix from the rotation expressed * by the rotation matrix m1, the translation t1, and the scale s. * The scale is only applied to the * rotational component of the matrix (upper 3x3) and not to the * translational component of the matrix. * @param m1 the rotation matrix * @param t1 the translation * @param s the scale value */ public final void set(Matrix3f m1, Vector3f t1, float s) { mat[0]=m1.m00*s; mat[1]=m1.m01*s; mat[2]=m1.m02*s; mat[3]=t1.x; mat[4]=m1.m10*s; mat[5]=m1.m11*s; mat[6]=m1.m12*s; mat[7]=t1.y; mat[8]=m1.m20*s; mat[9]=m1.m21*s; mat[10]=m1.m22*s; mat[11]=t1.z; mat[12]=0.0; mat[13]=0.0; mat[14]=0.0; mat[15]=1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { // input matrix may not normalize normalize(); } } /** * Sets the value of this matrix from the rotation expressed * by the rotation matrix m1, the translation t1, and the scale s. * The scale is only applied to the * rotational component of the matrix (upper 3x3) and not to the * translational component of the matrix. * @param m1 the rotation matrix * @param t1 the translation * @param s the scale value */ public final void set(Matrix3f m1, Vector3d t1, double s) { mat[0]=m1.m00*s; mat[1]=m1.m01*s; mat[2]=m1.m02*s; mat[3]=t1.x; mat[4]=m1.m10*s; mat[5]=m1.m11*s; mat[6]=m1.m12*s; mat[7]=t1.y; mat[8]=m1.m20*s; mat[9]=m1.m21*s; mat[10]=m1.m22*s; mat[11]=t1.z; mat[12]=0.0; mat[13]=0.0; mat[14]=0.0; mat[15]=1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the value of this matrix from the rotation expressed * by the rotation matrix m1, the translation t1, and the scale s. * The scale is only applied to the * rotational component of the matrix (upper 3x3) and not to the * translational component of the matrix. * @param m1 the rotation matrix * @param t1 the translation * @param s the scale value */ public final void set(Matrix3d m1, Vector3d t1, double s) { mat[0]=m1.m00*s; mat[1]=m1.m01*s; mat[2]=m1.m02*s; mat[3]=t1.x; mat[4]=m1.m10*s; mat[5]=m1.m11*s; mat[6]=m1.m12*s; mat[7]=t1.y; mat[8]=m1.m20*s; mat[9]=m1.m21*s; mat[10]=m1.m22*s; mat[11]=t1.z; mat[12]=0.0; mat[13]=0.0; mat[14]=0.0; mat[15]=1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the matrix values of this transform to the matrix values in the * upper 4x4 corner of the GMatrix parameter. If the parameter matrix is * smaller than 4x4, the remaining elements in the transform matrix are * assigned to zero. The transform matrix type is classified * internally by the Transform3D class. * @param matrix the general matrix from which the Transform3D matrix is derived */ public final void set(GMatrix matrix) { int i,j, k; int numRows = matrix.getNumRow(); int numCol = matrix.getNumCol(); for(i=0 ; i<4 ; i++) { k = i*4; for(j=0 ; j<4 ; j++) { if(i>=numRows || j>=numCol) mat[k+j] = 0.0; else mat[k+j] = matrix.getElement(i,j); } } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the matrix, type, and state of this transform to the matrix, * type, and state of transform t1. * @param t1 the transform to be copied */ public final void set(Transform3D t1){ mat[0] = t1.mat[0]; mat[1] = t1.mat[1]; mat[2] = t1.mat[2]; mat[3] = t1.mat[3]; mat[4] = t1.mat[4]; mat[5] = t1.mat[5]; mat[6] = t1.mat[6]; mat[7] = t1.mat[7]; mat[8] = t1.mat[8]; mat[9] = t1.mat[9]; mat[10] = t1.mat[10]; mat[11] = t1.mat[11]; mat[12] = t1.mat[12]; mat[13] = t1.mat[13]; mat[14] = t1.mat[14]; mat[15] = t1.mat[15]; type = t1.type; // don't copy rot[] and scales[] dirtyBits = t1.dirtyBits | ROTATION_BIT | SCALE_BIT; autoNormalize = t1.autoNormalize; } // This version gets a lock before doing the set. It is used internally synchronized void setWithLock(Transform3D t1) { this.set(t1); } // This version gets a lock before doing the get. It is used internally synchronized void getWithLock(Transform3D t1) { t1.set(this); } /** * Sets the matrix values of this transform to the matrix values in the * double precision array parameter. The matrix type is classified * internally by the Transform3D class. * @param matrix the double precision array of length 16 in row major format */ public final void set(double[] matrix) { mat[0] = matrix[0]; mat[1] = matrix[1]; mat[2] = matrix[2]; mat[3] = matrix[3]; mat[4] = matrix[4]; mat[5] = matrix[5]; mat[6] = matrix[6]; mat[7] = matrix[7]; mat[8] = matrix[8]; mat[9] = matrix[9]; mat[10] = matrix[10]; mat[11] = matrix[11]; mat[12] = matrix[12]; mat[13] = matrix[13]; mat[14] = matrix[14]; mat[15] = matrix[15]; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the matrix values of this transform to the matrix values in the * single precision array parameter. The matrix type is classified * internally by the Transform3D class. * @param matrix the single precision array of length 16 in row major format */ public final void set(float[] matrix) { mat[0] = matrix[0]; mat[1] = matrix[1]; mat[2] = matrix[2]; mat[3] = matrix[3]; mat[4] = matrix[4]; mat[5] = matrix[5]; mat[6] = matrix[6]; mat[7] = matrix[7]; mat[8] = matrix[8]; mat[9] = matrix[9]; mat[10] = matrix[10]; mat[11] = matrix[11]; mat[12] = matrix[12]; mat[13] = matrix[13]; mat[14] = matrix[14]; mat[15] = matrix[15]; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the matrix values of this transform to the matrix values in the * double precision Matrix4d argument. The transform type is classified * internally by the Transform3D class. * @param m1 the double precision 4x4 matrix */ public final void set(Matrix4d m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[3] = m1.m03; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[7] = m1.m13; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; mat[11] = m1.m23; mat[12] = m1.m30; mat[13] = m1.m31; mat[14] = m1.m32; mat[15] = m1.m33; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the matrix values of this transform to the matrix values in the * single precision Matrix4f argument. The transform type is classified * internally by the Transform3D class. * @param m1 the single precision 4x4 matrix */ public final void set(Matrix4f m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[3] = m1.m03; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[7] = m1.m13; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; mat[11] = m1.m23; mat[12] = m1.m30; mat[13] = m1.m31; mat[14] = m1.m32; mat[15] = m1.m33; dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix values in the single precision Matrix3f argument; the other * elements of this transform are initialized as if this were an identity * matrix (i.e., affine matrix with no translational component). * @param m1 the single precision 3x3 matrix */ public final void set(Matrix3f m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[3] = 0.0; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[7] = 0.0; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the rotational component (upper 3x3) of this transform to the * matrix values in the double precision Matrix3d argument; the other * elements of this transform are initialized as if this were an identity * matrix (ie, affine matrix with no translational component). * @param m1 the double precision 3x3 matrix */ public final void set(Matrix3d m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[3] = 0.0; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[7] = 0.0; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the rotational component (upper 3x3) of this transform to the * rotation matrix converted from the Euler angles provided; the other * non-rotational elements are set as if this were an identity matrix. * The euler parameter is a Vector3d consisting of three rotation angles * applied first about the X, then Y then Z axis. * These rotations are applied using a static frame of reference. In * other words, the orientation of the Y rotation axis is not affected * by the X rotation and the orientation of the Z rotation axis is not * affected by the X or Y rotation. * @param euler the Vector3d consisting of three rotation angles about X,Y,Z * */ public final void setEuler(Vector3d euler) { double sina, sinb, sinc; double cosa, cosb, cosc; sina = Math.sin(euler.x); sinb = Math.sin(euler.y); sinc = Math.sin(euler.z); cosa = Math.cos(euler.x); cosb = Math.cos(euler.y); cosc = Math.cos(euler.z); mat[0] = cosb * cosc; mat[1] = -(cosa * sinc) + (sina * sinb * cosc); mat[2] = (sina * sinc) + (cosa * sinb *cosc); mat[3] = 0.0; mat[4] = cosb * sinc; mat[5] = (cosa * cosc) + (sina * sinb * sinc); mat[6] = -(sina * cosc) + (cosa * sinb *sinc); mat[7] = 0.0; mat[8] = -sinb; mat[9] = sina * cosb; mat[10] = cosa * cosb; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(euler)) { dirtyBits = ALL_DIRTY; return; } type = AFFINE | CONGRUENT | RIGID | ORTHO; dirtyBits = CLASSIFY_BIT | SCALE_BIT | ROTATION_BIT; } /** * Places the values of this transform into the double precision array * of length 16. The first four elements of the array will contain * the top row of the transform matrix, etc. * @param matrix the double precision array of length 16 */ public final void get(double[] matrix) { matrix[0] = mat[0]; matrix[1] = mat[1]; matrix[2] = mat[2]; matrix[3] = mat[3]; matrix[4] = mat[4]; matrix[5] = mat[5]; matrix[6] = mat[6]; matrix[7] = mat[7]; matrix[8] = mat[8]; matrix[9] = mat[9]; matrix[10] = mat[10]; matrix[11] = mat[11]; matrix[12] = mat[12]; matrix[13] = mat[13]; matrix[14] = mat[14]; matrix[15] = mat[15]; } /** * Places the values of this transform into the single precision array * of length 16. The first four elements of the array will contain * the top row of the transform matrix, etc. * @param matrix the single precision array of length 16 */ public final void get(float[] matrix) { matrix[0] = (float) mat[0]; matrix[1] = (float) mat[1]; matrix[2] = (float) mat[2]; matrix[3] = (float) mat[3]; matrix[4] = (float) mat[4]; matrix[5] = (float) mat[5]; matrix[6] = (float) mat[6]; matrix[7] = (float) mat[7]; matrix[8] = (float) mat[8]; matrix[9] = (float) mat[9]; matrix[10] = (float) mat[10]; matrix[11] = (float) mat[11]; matrix[12] = (float) mat[12]; matrix[13] = (float) mat[13]; matrix[14] = (float) mat[14]; matrix[15] = (float) mat[15]; } /** * Places the normalized rotational component of this transform * into the 3x3 matrix argument. * @param m1 the matrix into which the rotational component is placed */ public final void get(Matrix3d m1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } m1.m00 = rot[0]; m1.m01 = rot[1]; m1.m02 = rot[2]; m1.m10 = rot[3]; m1.m11 = rot[4]; m1.m12 = rot[5]; m1.m20 = rot[6]; m1.m21 = rot[7]; m1.m22 = rot[8]; } /** * Places the normalized rotational component of this transform * into the 3x3 matrix argument. * @param m1 the matrix into which the rotational component is placed */ public final void get(Matrix3f m1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } m1.m00 = (float)rot[0]; m1.m01 = (float)rot[1]; m1.m02 = (float)rot[2]; m1.m10 = (float)rot[3]; m1.m11 = (float)rot[4]; m1.m12 = (float)rot[5]; m1.m20 = (float)rot[6]; m1.m21 = (float)rot[7]; m1.m22 = (float)rot[8]; } /** * Places the quaternion equivalent of the normalized rotational * component of this transform into the quaternion parameter. * @param q1 the quaternion into which the rotation component is placed */ public final void get(Quat4f q1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } double ww = 0.25*(1.0 + rot[0] + rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.w = (float)Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (float)((rot[7] - rot[5])*ww); q1.y = (float)((rot[2] - rot[6])*ww); q1.z = (float)((rot[3] - rot[1])*ww); return; } q1.w = 0.0f; ww = -0.5*(rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.x = (float)Math.sqrt(ww); ww = 0.5/q1.x; q1.y = (float)(rot[3]*ww); q1.z = (float)(rot[6]*ww); return; } q1.x = 0.0f; ww = 0.5*(1.0 - rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.y = (float)Math.sqrt(ww); q1.z = (float)(rot[7]/(2.0*q1.y)); return; } q1.y = 0.0f; q1.z = 1.0f; } /** * Places the quaternion equivalent of the normalized rotational * component of this transform into the quaternion parameter. * @param q1 the quaternion into which the rotation component is placed */ public final void get(Quat4d q1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } double ww = 0.25*(1.0 + rot[0] + rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.w = Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (rot[7] - rot[5])*ww; q1.y = (rot[2] - rot[6])*ww; q1.z = (rot[3] - rot[1])*ww; return; } q1.w = 0.0; ww = -0.5*(rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.x = Math.sqrt(ww); ww = 0.5/q1.x; q1.y = rot[3]*ww; q1.z = rot[6]*ww; return; } q1.x = 0.0; ww = 0.5*(1.0 - rot[8]); if (!((ww < 0 ? -ww : ww) < 1.0e-10)) { q1.y = Math.sqrt(ww); q1.z = rot[7]/(2.0*q1.y); return; } q1.y = 0.0; q1.z = 1.0; } /** * Places the values of this transform into the double precision * matrix argument. * @param matrix the double precision matrix */ public final void get(Matrix4d matrix) { matrix.m00 = mat[0]; matrix.m01 = mat[1]; matrix.m02 = mat[2]; matrix.m03 = mat[3]; matrix.m10 = mat[4]; matrix.m11 = mat[5]; matrix.m12 = mat[6]; matrix.m13 = mat[7]; matrix.m20 = mat[8]; matrix.m21 = mat[9]; matrix.m22 = mat[10]; matrix.m23 = mat[11]; matrix.m30 = mat[12]; matrix.m31 = mat[13]; matrix.m32 = mat[14]; matrix.m33 = mat[15]; } /** * Places the values of this transform into the single precision matrix * argument. * @param matrix the single precision matrix */ public final void get(Matrix4f matrix) { matrix.m00 = (float) mat[0]; matrix.m01 = (float) mat[1]; matrix.m02 = (float) mat[2]; matrix.m03 = (float) mat[3]; matrix.m10 = (float) mat[4]; matrix.m11 = (float) mat[5]; matrix.m12 = (float) mat[6]; matrix.m13 = (float) mat[7]; matrix.m20 = (float) mat[8]; matrix.m21 = (float) mat[9]; matrix.m22 = (float) mat[10]; matrix.m23 = (float) mat[11]; matrix.m30 = (float) mat[12]; matrix.m31 = (float) mat[13]; matrix.m32 = (float) mat[14]; matrix.m33 = (float) mat[15]; } /** * Places the quaternion equivalent of the normalized rotational * component of this transform into the quaternion parameter; * places the translational component into the Vector parameter. * @param q1 the quaternion representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Quat4d q1, Vector3d t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } t1.x = mat[3]; t1.y = mat[7]; t1.z = mat[11]; double maxScale = max3(scales); double ww = 0.25*(1.0 + rot[0] + rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < EPSILON)) { q1.w = Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (rot[7] - rot[5])*ww; q1.y = (rot[2] - rot[6])*ww; q1.z = (rot[3] - rot[1])*ww; return maxScale; } q1.w = 0.0; ww = -0.5*(rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < EPSILON)) { q1.x = Math.sqrt(ww); ww = 0.5/q1.x; q1.y = rot[3]*ww; q1.z = rot[6]*ww; return maxScale; } q1.x = 0.0; ww = 0.5*(1.0 - rot[8]); if (!((ww < 0 ? -ww : ww) < EPSILON)) { q1.y = Math.sqrt(ww); q1.z = rot[7]/(2.0*q1.y); return maxScale; } q1.y = 0.0; q1.z = 1.0; return maxScale; } /** * Places the quaternion equivalent of the normalized rotational * component of this transform into the quaternion parameter; * places the translational component into the Vector parameter. * @param q1 the quaternion representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final float get(Quat4f q1, Vector3f t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } double maxScale = max3(scales); t1.x = (float)mat[3]; t1.y = (float)mat[7]; t1.z = (float)mat[11]; double ww = 0.25*(1.0 + rot[0] + rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < EPSILON)) { q1.w = (float)Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (float)((rot[7] - rot[5])*ww); q1.y = (float)((rot[2] - rot[6])*ww); q1.z = (float)((rot[3] - rot[1])*ww); return (float) maxScale; } q1.w = 0.0f; ww = -0.5*(rot[4] + rot[8]); if (!((ww < 0 ? -ww : ww) < EPSILON)) { q1.x = (float)Math.sqrt(ww); ww = 0.5/q1.x; q1.y = (float)(rot[3]*ww); q1.z = (float)(rot[6]*ww); return (float) maxScale; } q1.x = 0.0f; ww = 0.5*(1.0 - rot[8]); if (!((ww < 0? -ww : ww) < EPSILON)) { q1.y = (float)Math.sqrt(ww); q1.z = (float)(rot[7]/(2.0*q1.y)); return (float) maxScale; } q1.y = 0.0f; q1.z = 1.0f; return (float) maxScale; } /** * Places the quaternion equivalent of the normalized rotational * component of this transform into the quaternion parameter; * places the translational component into the Vector parameter. * @param q1 the quaternion representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Quat4f q1, Vector3d t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } double maxScale = max3(scales); t1.x = mat[3]; t1.y = mat[7]; t1.z = mat[11]; double ww = 0.25*(1.0 + rot[0] + rot[4] + rot[8]); if (!(( ww < 0 ? -ww : ww) < EPSILON)) { q1.w = (float)Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (float)((rot[7] - rot[5])*ww); q1.y = (float)((rot[2] - rot[6])*ww); q1.z = (float)((rot[3] - rot[1])*ww); return maxScale; } q1.w = 0.0f; ww = -0.5*(rot[4] + rot[8]); if (!(( ww < 0 ? -ww : ww) < EPSILON)) { q1.x = (float)Math.sqrt(ww); ww = 0.5/q1.x; q1.y = (float)(rot[3]*ww); q1.z = (float)(rot[6]*ww); return maxScale; } q1.x = 0.0f; ww = 0.5*(1.0 - rot[8]); if (!(( ww < 0 ? -ww : ww) < EPSILON)) { q1.y = (float)Math.sqrt(ww); q1.z = (float)(rot[7]/(2.0*q1.y)); return maxScale; } q1.y = 0.0f; q1.z = 1.0f; return maxScale; } /** * Places the normalized rotational component of this transform * into the matrix parameter; place the translational component * into the vector parameter. * @param m1 the normalized matrix representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Matrix3d m1, Vector3d t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } t1.x = mat[3]; t1.y = mat[7]; t1.z = mat[11]; m1.m00 = rot[0]; m1.m01 = rot[1]; m1.m02 = rot[2]; m1.m10 = rot[3]; m1.m11 = rot[4]; m1.m12 = rot[5]; m1.m20 = rot[6]; m1.m21 = rot[7]; m1.m22 = rot[8]; return max3(scales); } /** * Places the normalized rotational component of this transform * into the matrix parameter; place the translational component * into the vector parameter. * @param m1 the normalized matrix representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final float get(Matrix3f m1, Vector3f t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } t1.x = (float)mat[3]; t1.y = (float)mat[7]; t1.z = (float)mat[11]; m1.m00 = (float)rot[0]; m1.m01 = (float)rot[1]; m1.m02 = (float)rot[2]; m1.m10 = (float)rot[3]; m1.m11 = (float)rot[4]; m1.m12 = (float)rot[5]; m1.m20 = (float)rot[6]; m1.m21 = (float)rot[7]; m1.m22 = (float)rot[8]; return (float) max3(scales); } /** * Places the normalized rotational component of this transform * into the matrix parameter; place the translational component * into the vector parameter. * @param m1 the normalized matrix representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Matrix3f m1, Vector3d t1) { if ((dirtyBits & ROTATION_BIT) != 0) { computeScaleRotation(false); } else if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } t1.x = mat[3]; t1.y = mat[7]; t1.z = mat[11]; m1.m00 = (float)rot[0]; m1.m01 = (float)rot[1]; m1.m02 = (float)rot[2]; m1.m10 = (float)rot[3]; m1.m11 = (float)rot[4]; m1.m12 = (float)rot[5]; m1.m20 = (float)rot[6]; m1.m21 = (float)rot[7]; m1.m22 = (float)rot[8]; return max3(scales); } /** * Returns the uniform scale factor of this matrix. * If the matrix has non-uniform scale factors, the largest of the * x, y, and z scale factors will be returned. * @return the scale factor of this matrix */ public final double getScale() { if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } return max3(scales); } /** * Gets the possibly non-uniform scale components of the current * transform and places them into the scale vector. * @param scale the vector into which the x,y,z scale values will be placed */ public final void getScale(Vector3d scale) { if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } scale.x = scales[0]; scale.y = scales[1]; scale.z = scales[2]; } /** * Retrieves the translational components of this transform. * @param trans the vector that will receive the translational component */ public final void get(Vector3f trans) { trans.x = (float)mat[3]; trans.y = (float)mat[7]; trans.z = (float)mat[11]; } /** * Retrieves the translational components of this transform. * @param trans the vector that will receive the translational component */ public final void get(Vector3d trans) { trans.x = mat[3]; trans.y = mat[7]; trans.z = mat[11]; } /** * Sets the value of this transform to the inverse of the passed * Transform3D parameter. This method uses the transform type * to determine the optimal algorithm for inverting transform t1. * @param t1 the transform to be inverted * @exception SingularMatrixException thrown if transform t1 is * not invertible */ public final void invert(Transform3D t1) { if (t1 == this) { invert(); } else if (t1.isAffine()) { // We can't use invertOrtho() because of numerical // instability unless we set tolerance of ortho test to 0 invertAffine(t1); } else { invertGeneral(t1); } } /** * Inverts this transform in place. This method uses the transform * type to determine the optimal algorithm for inverting this transform. * @exception SingularMatrixException thrown if this transform is * not invertible */ public final void invert() { if (isAffine()) { invertAffine(); } else { invertGeneral(this); } } /** * Congruent invert routine. * * if uniform scale s * * [R | t] => [R^T/s*s | -R^T * t/s*s] * */ /* final void invertOrtho() { double tmp, s1, s2, s3; // do not force classifyRigid() if (((dirtyBits & CONGRUENT_BIT) == 0) && ((type & CONGRUENT) != 0)) { s1 = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; if (s1 == 0) { throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); } s1 = s2 = s3 = 1/s1; dirtyBits |= ROTSCALESVD_DIRTY; } else { // non-uniform scale matrix s1 = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; s2 = mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]; s3 = mat[2]*mat[2] + mat[6]*mat[6] + mat[10]*mat[10]; if ((s1 == 0) || (s2 == 0) || (s3 == 0)) { throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); } s1 = 1/s1; s2 = 1/s2; s3 = 1/s3; dirtyBits |= ROTSCALESVD_DIRTY | ORTHO_BIT | CONGRUENT_BIT | RIGID_BIT | CLASSIFY_BIT; } // multiple by 1/s will cause loss in numerical value tmp = mat[1]; mat[1] = mat[4]*s1; mat[4] = tmp*s2; tmp = mat[2]; mat[2] = mat[8]*s1; mat[8] = tmp*s3; tmp = mat[6]; mat[6] = mat[9]*s2; mat[9] = tmp*s3; mat[0] *= s1; mat[5] *= s2; mat[10] *= s3; tmp = mat[3]; s1 = mat[7]; mat[3] = -(tmp * mat[0] + s1 * mat[1] + mat[11] * mat[2]); mat[7] = -(tmp * mat[4] + s1 * mat[5] + mat[11] * mat[6]); mat[11]= -(tmp * mat[8] + s1 * mat[9] + mat[11] * mat[10]); mat[12] = mat[13] = mat[14] = 0.0; mat[15] = 1.0; } */ /** * Orthogonal matrix invert routine. * Inverts t1 and places the result in "this". */ /* final void invertOrtho(Transform3D t1) { double s1, s2, s3; // do not force classifyRigid() if (((t1.dirtyBits & CONGRUENT_BIT) == 0) && ((t1.type & CONGRUENT) != 0)) { s1 = t1.mat[0]*t1.mat[0] + t1.mat[4]*t1.mat[4] + t1.mat[8]*t1.mat[8]; if (s1 == 0) { throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); } s1 = s2 = s3 = 1/s1; dirtyBits = t1.dirtyBits | ROTSCALESVD_DIRTY; } else { // non-uniform scale matrix s1 = t1.mat[0]*t1.mat[0] + t1.mat[4]*t1.mat[4] + t1.mat[8]*t1.mat[8]; s2 = t1.mat[1]*t1.mat[1] + t1.mat[5]*t1.mat[5] + t1.mat[9]*t1.mat[9]; s3 = t1.mat[2]*t1.mat[2] + t1.mat[6]*t1.mat[6] + t1.mat[10]*t1.mat[10]; if ((s1 == 0) || (s2 == 0) || (s3 == 0)) { throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); } s1 = 1/s1; s2 = 1/s2; s3 = 1/s3; dirtyBits = t1.dirtyBits | ROTSCALESVD_DIRTY | ORTHO_BIT | CONGRUENT_BIT | RIGID_BIT; } mat[0] = t1.mat[0]*s1; mat[1] = t1.mat[4]*s1; mat[2] = t1.mat[8]*s1; mat[4] = t1.mat[1]*s2; mat[5] = t1.mat[5]*s2; mat[6] = t1.mat[9]*s2; mat[8] = t1.mat[2]*s3; mat[9] = t1.mat[6]*s3; mat[10] = t1.mat[10]*s3; mat[3] = -(t1.mat[3] * mat[0] + t1.mat[7] * mat[1] + t1.mat[11] * mat[2]); mat[7] = -(t1.mat[3] * mat[4] + t1.mat[7] * mat[5] + t1.mat[11] * mat[6]); mat[11]= -(t1.mat[3] * mat[8] + t1.mat[7] * mat[9] + t1.mat[11] * mat[10]); mat[12] = mat[13] = mat[14] = 0.0; mat[15] = 1.0; type = t1.type; } */ /** * Affine invert routine. Inverts t1 and places the result in "this". */ final void invertAffine(Transform3D t1) { double determinant = t1.affineDeterminant(); if (determinant == 0.0) throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); double s = (t1.mat[0]*t1.mat[0] + t1.mat[1]*t1.mat[1] + t1.mat[2]*t1.mat[2] + t1.mat[3]*t1.mat[3])* (t1.mat[4]*t1.mat[4] + t1.mat[5]*t1.mat[5] + t1.mat[6]*t1.mat[6] + t1.mat[7]*t1.mat[7])* (t1.mat[8]*t1.mat[8] + t1.mat[9]*t1.mat[9] + t1.mat[10]*t1.mat[10] + t1.mat[11]*t1.mat[11]); if ((determinant*determinant) < (EPS * s)) { // using invertGeneral is numerically more stable for //this case see bug 4227733 invertGeneral(t1); return; } s = 1.0 / determinant; mat[0] = (t1.mat[5]*t1.mat[10] - t1.mat[9]*t1.mat[6]) * s; mat[1] = -(t1.mat[1]*t1.mat[10] - t1.mat[9]*t1.mat[2]) * s; mat[2] = (t1.mat[1]*t1.mat[6] - t1.mat[5]*t1.mat[2]) * s; mat[4] = -(t1.mat[4]*t1.mat[10] - t1.mat[8]*t1.mat[6]) * s; mat[5] = (t1.mat[0]*t1.mat[10] - t1.mat[8]*t1.mat[2]) * s; mat[6] = -(t1.mat[0]*t1.mat[6] - t1.mat[4]*t1.mat[2]) * s; mat[8] = (t1.mat[4]*t1.mat[9] - t1.mat[8]*t1.mat[5]) * s; mat[9] = -(t1.mat[0]*t1.mat[9] - t1.mat[8]*t1.mat[1]) * s; mat[10]= (t1.mat[0]*t1.mat[5] - t1.mat[4]*t1.mat[1]) * s; mat[3] = -(t1.mat[3] * mat[0] + t1.mat[7] * mat[1] + t1.mat[11] * mat[2]); mat[7] = -(t1.mat[3] * mat[4] + t1.mat[7] * mat[5] + t1.mat[11] * mat[6]); mat[11]= -(t1.mat[3] * mat[8] + t1.mat[7] * mat[9] + t1.mat[11] * mat[10]); mat[12] = mat[13] = mat[14] = 0.0; mat[15] = 1.0; dirtyBits = t1.dirtyBits | ROTSCALESVD_DIRTY | CLASSIFY_BIT | ORTHO_BIT; type = t1.type; } /** * Affine invert routine. Inverts "this" matrix in place. */ final void invertAffine() { double determinant = affineDeterminant(); if (determinant == 0.0) throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); double s = (mat[0]*mat[0] + mat[1]*mat[1] + mat[2]*mat[2] + mat[3]*mat[3])* (mat[4]*mat[4] + mat[5]*mat[5] + mat[6]*mat[6] + mat[7]*mat[7])* (mat[8]*mat[8] + mat[9]*mat[9] + mat[10]*mat[10] + mat[11]*mat[11]); if ((determinant*determinant) < (EPS * s)) { invertGeneral(this); return; } s = 1.0 / determinant; double tmp0 = (mat[5]*mat[10] - mat[9]*mat[6]) * s; double tmp1 = -(mat[1]*mat[10] - mat[9]*mat[2]) * s; double tmp2 = (mat[1]*mat[6] - mat[5]*mat[2]) * s; double tmp4 = -(mat[4]*mat[10] - mat[8]*mat[6]) * s; double tmp5 = (mat[0]*mat[10] - mat[8]*mat[2]) * s; double tmp6 = -(mat[0]*mat[6] - mat[4]*mat[2]) * s; double tmp8 = (mat[4]*mat[9] - mat[8]*mat[5]) * s; double tmp9 = -(mat[0]*mat[9] - mat[8]*mat[1]) * s; double tmp10= (mat[0]*mat[5] - mat[4]*mat[1]) * s; double tmp3 = -(mat[3] * tmp0 + mat[7] * tmp1 + mat[11] * tmp2); double tmp7 = -(mat[3] * tmp4 + mat[7] * tmp5 + mat[11] * tmp6); mat[11]= -(mat[3] * tmp8 + mat[7] * tmp9 + mat[11] * tmp10); mat[0]=tmp0; mat[1]=tmp1; mat[2]=tmp2; mat[3]=tmp3; mat[4]=tmp4; mat[5]=tmp5; mat[6]=tmp6; mat[7]=tmp7; mat[8]=tmp8; mat[9]=tmp9; mat[10]=tmp10; mat[12] = mat[13] = mat[14] = 0.0; mat[15] = 1.0; dirtyBits |= ROTSCALESVD_DIRTY | CLASSIFY_BIT | ORTHO_BIT; } /** * General invert routine. Inverts t1 and places the result in "this". * Note that this routine handles both the "this" version and the * non-"this" version. * * Also note that since this routine is slow anyway, we won't worry * about allocating a little bit of garbage. */ final void invertGeneral(Transform3D t1) { double tmp[] = new double[16]; int row_perm[] = new int[4]; int i, r, c; // Use LU decomposition and backsubstitution code specifically // for floating-point 4x4 matrices. // Copy source matrix to tmp System.arraycopy(t1.mat, 0, tmp, 0, tmp.length); // Calculate LU decomposition: Is the matrix singular? if (!luDecomposition(tmp, row_perm)) { // Matrix has no inverse throw new SingularMatrixException(J3dI18N.getString("Transform3D1")); } // Perform back substitution on the identity matrix // luDecomposition will set rot[] & scales[] for use // in luBacksubstituation mat[0] = 1.0; mat[1] = 0.0; mat[2] = 0.0; mat[3] = 0.0; mat[4] = 0.0; mat[5] = 1.0; mat[6] = 0.0; mat[7] = 0.0; mat[8] = 0.0; mat[9] = 0.0; mat[10] = 1.0; mat[11] = 0.0; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; luBacksubstitution(tmp, row_perm, this.mat); type = 0; dirtyBits = ALL_DIRTY; } /** * Given a 4x4 array "matrix0", this function replaces it with the * LU decomposition of a row-wise permutation of itself. The input * parameters are "matrix0" and "dimen". The array "matrix0" is also * an output parameter. The vector "row_perm[4]" is an output * parameter that contains the row permutations resulting from partial * pivoting. The output parameter "even_row_xchg" is 1 when the * number of row exchanges is even, or -1 otherwise. Assumes data * type is always double. * * This function is similar to luDecomposition, except that it * is tuned specifically for 4x4 matrices. * * @return true if the matrix is nonsingular, or false otherwise. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 40-45. // static boolean luDecomposition(double[] matrix0, int[] row_perm) { // Can't re-use this temporary since the method is static. double row_scale[] = new double[4]; // Determine implicit scaling information by looping over rows { int i, j; int ptr, rs; double big, temp; ptr = 0; rs = 0; // For each row ... i = 4; while (i-- != 0) { big = 0.0; // For each column, find the largest element in the row j = 4; while (j-- != 0) { temp = matrix0[ptr++]; temp = Math.abs(temp); if (temp > big) { big = temp; } } // Is the matrix singular? if (big == 0.0) { return false; } row_scale[rs++] = 1.0 / big; } } { int j; int mtx; mtx = 0; // For all columns, execute Crout's method for (j = 0; j < 4; j++) { int i, imax, k; int target, p1, p2; double sum, big, temp; // Determine elements of upper diagonal matrix U for (i = 0; i < j; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = i; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; } // Search for largest pivot element and calculate // intermediate elements of lower diagonal matrix L. big = 0.0; imax = -1; for (i = j; i < 4; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = j; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; // Is this the best pivot so far? if ((temp = row_scale[i] * Math.abs(sum)) >= big) { big = temp; imax = i; } } if (imax < 0) { return false; } // Is a row exchange necessary? if (j != imax) { // Yes: exchange rows k = 4; p1 = mtx + (4*imax); p2 = mtx + (4*j); while (k-- != 0) { temp = matrix0[p1]; matrix0[p1++] = matrix0[p2]; matrix0[p2++] = temp; } // Record change in scale factor row_scale[imax] = row_scale[j]; } // Record row permutation row_perm[j] = imax; // Is the matrix singular if (matrix0[(mtx + (4*j) + j)] == 0.0) { return false; } // Divide elements of lower diagonal matrix L by pivot if (j != (4-1)) { temp = 1.0 / (matrix0[(mtx + (4*j) + j)]); target = mtx + (4*(j+1)) + j; i = 3 - j; while (i-- != 0) { matrix0[target] *= temp; target += 4; } } } } return true; } /** * Solves a set of linear equations. The input parameters "matrix1", * and "row_perm" come from luDecompostionD4x4 and do not change * here. The parameter "matrix2" is a set of column vectors assembled * into a 4x4 matrix of floating-point values. The procedure takes each * column of "matrix2" in turn and treats it as the right-hand side of the * matrix equation Ax = LUx = b. The solution vector replaces the * original column of the matrix. * * If "matrix2" is the identity matrix, the procedure replaces its contents * with the inverse of the matrix from which "matrix1" was originally * derived. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 44-45. // static void luBacksubstitution(double[] matrix1, int[] row_perm, double[] matrix2) { int i, ii, ip, j, k; int rp; int cv, rv; // rp = row_perm; rp = 0; // For each column vector of matrix2 ... for (k = 0; k < 4; k++) { // cv = &(matrix2[0][k]); cv = k; ii = -1; // Forward substitution for (i = 0; i < 4; i++) { double sum; ip = row_perm[rp+i]; sum = matrix2[cv+4*ip]; matrix2[cv+4*ip] = matrix2[cv+4*i]; if (ii >= 0) { // rv = &(matrix1[i][0]); rv = i*4; for (j = ii; j <= i-1; j++) { sum -= matrix1[rv+j] * matrix2[cv+4*j]; } } else if (sum != 0.0) { ii = i; } matrix2[cv+4*i] = sum; } // Backsubstitution // rv = &(matrix1[3][0]); rv = 3*4; matrix2[cv+4*3] /= matrix1[rv+3]; rv -= 4; matrix2[cv+4*2] = (matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2]; rv -= 4; matrix2[cv+4*1] = (matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1]; rv -= 4; matrix2[cv+4*0] = (matrix2[cv+4*0] - matrix1[rv+1] * matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0]; } } // given that this matrix is affine final double affineDeterminant() { return mat[0]*(mat[5]*mat[10] - mat[6]*mat[9]) - mat[1]*(mat[4]*mat[10] - mat[6]*mat[8]) + mat[2]*(mat[4]*mat[ 9] - mat[5]*mat[8]); } /** * Calculates and returns the determinant of this transform. * @return the double precision determinant */ public final double determinant() { if (isAffine()) { return mat[0]*(mat[5]*mat[10] - mat[6]*mat[9]) - mat[1]*(mat[4]*mat[10] - mat[6]*mat[8]) + mat[2]*(mat[4]*mat[ 9] - mat[5]*mat[8]); } // cofactor exapainsion along first row return mat[0]*(mat[5]*(mat[10]*mat[15] - mat[11]*mat[14]) - mat[6]*(mat[ 9]*mat[15] - mat[11]*mat[13]) + mat[7]*(mat[ 9]*mat[14] - mat[10]*mat[13])) - mat[1]*(mat[4]*(mat[10]*mat[15] - mat[11]*mat[14]) - mat[6]*(mat[ 8]*mat[15] - mat[11]*mat[12]) + mat[7]*(mat[ 8]*mat[14] - mat[10]*mat[12])) + mat[2]*(mat[4]*(mat[ 9]*mat[15] - mat[11]*mat[13]) - mat[5]*(mat[ 8]*mat[15] - mat[11]*mat[12]) + mat[7]*(mat[ 8]*mat[13] - mat[ 9]*mat[12])) - mat[3]*(mat[4]*(mat[ 9]*mat[14] - mat[10]*mat[13]) - mat[5]*(mat[ 8]*mat[14] - mat[10]*mat[12]) + mat[6]*(mat[ 8]*mat[13] - mat[ 9]*mat[12])); } /** * Sets the value of this transform to a uniform scale; all of * the matrix values are modified. * @param scale the scale factor for the transform */ public final void set(double scale) { setScaleTranslation(0, 0, 0, scale); } /** * Sets the value of this transform to a scale and translation * matrix; the scale is not applied to the translation and all * of the matrix values are modified. * @param scale the scale factor for the transform * @param v1 the translation amount */ public final void set(double scale, Vector3d v1) { setScaleTranslation(v1.x, v1.y, v1.z, scale); } /** * Sets the value of this transform to a scale and translation * matrix; the scale is not applied to the translation and all * of the matrix values are modified. * @param scale the scale factor for the transform * @param v1 the translation amount */ public final void set(float scale, Vector3f v1) { setScaleTranslation(v1.x, v1.y, v1.z, scale); } /** * Sets the value of this transform to a scale and translation matrix; * the translation is scaled by the scale factor and all of the * matrix values are modified. * @param v1 the translation amount * @param scale the scale factor for the transform AND the translation */ public final void set(Vector3d v1, double scale) { setScaleTranslation(v1.x*scale, v1.y*scale, v1.z*scale, scale); } /** * Sets the value of this transform to a scale and translation matrix; * the translation is scaled by the scale factor and all of the * matrix values are modified. * @param v1 the translation amount * @param scale the scale factor for the transform AND the translation */ public final void set(Vector3f v1, float scale) { setScaleTranslation(v1.x*scale, v1.y*scale, v1.z*scale, scale); } private final void setScaleTranslation(double x, double y, double z, double scale) { mat[0] = scale; mat[1] = 0.0; mat[2] = 0.0; mat[3] = x; mat[4] = 0.0; mat[5] = scale; mat[6] = 0.0; mat[7] = y; mat[8] = 0.0; mat[9] = 0.0; mat[10] = scale; mat[11] = z; mat[12] = 0.0; mat[13] = 0.0; mat[14] = 0.0; mat[15] = 1.0; if(scales == null) scales = new double[3]; scales[0] = scales[1] = scales[2] = scale; // Issue 253: set all dirty bits if input is infinity or NaN if (isInfOrNaN(x) || isInfOrNaN(y) || isInfOrNaN(z) || isInfOrNaN(scale)) { dirtyBits = ALL_DIRTY; return; } type = AFFINE | CONGRUENT | ORTHO; dirtyBits = CLASSIFY_BIT | ROTATION_BIT | RIGID_BIT; } /** * Multiplies each element of this transform by a scalar. * @param scalar the scalar multiplier */ public final void mul(double scalar) { for (int i=0 ; i<16 ; i++) { mat[i] *= scalar; } dirtyBits = ALL_DIRTY; } /** * Multiplies each element of transform t1 by a scalar and places * the result into this. Transform t1 is not modified. * @param scalar the scalar multiplier * @param t1 the original transform */ public final void mul(double scalar, Transform3D t1) { for (int i=0 ; i<16 ; i++) { mat[i] = t1.mat[i] * scalar; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Sets the value of this transform to the result of multiplying itself * with transform t1 (this = this * t1). * @param t1 the other transform */ public final void mul(Transform3D t1) { double tmp0, tmp1, tmp2, tmp3; double tmp4, tmp5, tmp6, tmp7; double tmp8, tmp9, tmp10, tmp11; boolean aff = false; if (t1.isAffine()) { tmp0 = mat[0]*t1.mat[0] + mat[1]*t1.mat[4] + mat[2]*t1.mat[8]; tmp1 = mat[0]*t1.mat[1] + mat[1]*t1.mat[5] + mat[2]*t1.mat[9]; tmp2 = mat[0]*t1.mat[2] + mat[1]*t1.mat[6] + mat[2]*t1.mat[10]; tmp3 = mat[0]*t1.mat[3] + mat[1]*t1.mat[7] + mat[2]*t1.mat[11] + mat[3]; tmp4 = mat[4]*t1.mat[0] + mat[5]*t1.mat[4] + mat[6]*t1.mat[8]; tmp5 = mat[4]*t1.mat[1] + mat[5]*t1.mat[5] + mat[6]*t1.mat[9]; tmp6 = mat[4]*t1.mat[2] + mat[5]*t1.mat[6] + mat[6]*t1.mat[10]; tmp7 = mat[4]*t1.mat[3] + mat[5]*t1.mat[7] + mat[6]*t1.mat[11] + mat[7]; tmp8 = mat[8]*t1.mat[0] + mat[9]*t1.mat[4] + mat[10]*t1.mat[8]; tmp9 = mat[8]*t1.mat[1] + mat[9]*t1.mat[5] + mat[10]*t1.mat[9]; tmp10 = mat[8]*t1.mat[2] + mat[9]*t1.mat[6] + mat[10]*t1.mat[10]; tmp11 = mat[8]*t1.mat[3] + mat[9]*t1.mat[7] + mat[10]*t1.mat[11] + mat[11]; if (isAffine()) { mat[12] = mat[13] = mat[14] = 0; mat[15] = 1; aff = true; } else { double tmp12 = mat[12]*t1.mat[0] + mat[13]*t1.mat[4] + mat[14]*t1.mat[8]; double tmp13 = mat[12]*t1.mat[1] + mat[13]*t1.mat[5] + mat[14]*t1.mat[9]; double tmp14 = mat[12]*t1.mat[2] + mat[13]*t1.mat[6] + mat[14]*t1.mat[10]; double tmp15 = mat[12]*t1.mat[3] + mat[13]*t1.mat[7] + mat[14]*t1.mat[11] + mat[15]; mat[12] = tmp12; mat[13] = tmp13; mat[14] = tmp14; mat[15] = tmp15; } } else { tmp0 = mat[0]*t1.mat[0] + mat[1]*t1.mat[4] + mat[2]*t1.mat[8] + mat[3]*t1.mat[12]; tmp1 = mat[0]*t1.mat[1] + mat[1]*t1.mat[5] + mat[2]*t1.mat[9] + mat[3]*t1.mat[13]; tmp2 = mat[0]*t1.mat[2] + mat[1]*t1.mat[6] + mat[2]*t1.mat[10] + mat[3]*t1.mat[14]; tmp3 = mat[0]*t1.mat[3] + mat[1]*t1.mat[7] + mat[2]*t1.mat[11] + mat[3]*t1.mat[15]; tmp4 = mat[4]*t1.mat[0] + mat[5]*t1.mat[4] + mat[6]*t1.mat[8] + mat[7]*t1.mat[12]; tmp5 = mat[4]*t1.mat[1] + mat[5]*t1.mat[5] + mat[6]*t1.mat[9] + mat[7]*t1.mat[13]; tmp6 = mat[4]*t1.mat[2] + mat[5]*t1.mat[6] + mat[6]*t1.mat[10] + mat[7]*t1.mat[14]; tmp7 = mat[4]*t1.mat[3] + mat[5]*t1.mat[7] + mat[6]*t1.mat[11] + mat[7]*t1.mat[15]; tmp8 = mat[8]*t1.mat[0] + mat[9]*t1.mat[4] + mat[10]*t1.mat[8] + mat[11]*t1.mat[12]; tmp9 = mat[8]*t1.mat[1] + mat[9]*t1.mat[5] + mat[10]*t1.mat[9] + mat[11]*t1.mat[13]; tmp10 = mat[8]*t1.mat[2] + mat[9]*t1.mat[6] + mat[10]*t1.mat[10]+ mat[11]*t1.mat[14]; tmp11 = mat[8]*t1.mat[3] + mat[9]*t1.mat[7] + mat[10]*t1.mat[11] + mat[11]*t1.mat[15]; if (isAffine()) { mat[12] = t1.mat[12]; mat[13] = t1.mat[13]; mat[14] = t1.mat[14]; mat[15] = t1.mat[15]; } else { double tmp12 = mat[12]*t1.mat[0] + mat[13]*t1.mat[4] + mat[14]*t1.mat[8] + mat[15]*t1.mat[12]; double tmp13 = mat[12]*t1.mat[1] + mat[13]*t1.mat[5] + mat[14]*t1.mat[9] + mat[15]*t1.mat[13]; double tmp14 = mat[12]*t1.mat[2] + mat[13]*t1.mat[6] + mat[14]*t1.mat[10] + mat[15]*t1.mat[14]; double tmp15 = mat[12]*t1.mat[3] + mat[13]*t1.mat[7] + mat[14]*t1.mat[11] + mat[15]*t1.mat[15]; mat[12] = tmp12; mat[13] = tmp13; mat[14] = tmp14; mat[15] = tmp15; } } mat[0] = tmp0; mat[1] = tmp1; mat[2] = tmp2; mat[3] = tmp3; mat[4] = tmp4; mat[5] = tmp5; mat[6] = tmp6; mat[7] = tmp7; mat[8] = tmp8; mat[9] = tmp9; mat[10] = tmp10; mat[11] = tmp11; if (((dirtyBits & CONGRUENT_BIT) == 0) && ((type & CONGRUENT) != 0) && ((t1.dirtyBits & CONGRUENT_BIT) == 0) && ((t1.type & CONGRUENT) != 0)) { type &= t1.type; dirtyBits |= t1.dirtyBits | CLASSIFY_BIT | ROTSCALESVD_DIRTY | RIGID_BIT; } else { if (aff) { dirtyBits = ORTHO_BIT | CONGRUENT_BIT | RIGID_BIT | CLASSIFY_BIT | ROTSCALESVD_DIRTY; } else { dirtyBits = ALL_DIRTY; } } if (autoNormalize) { normalize(); } } /** * Sets the value of this transform to the result of multiplying transform * t1 by transform t2 (this = t1*t2). * @param t1 the left transform * @param t2 the right transform */ public final void mul(Transform3D t1, Transform3D t2) { boolean aff = false; if ((this != t1) && (this != t2)) { if (t2.isAffine()) { mat[0] = t1.mat[0]*t2.mat[0] + t1.mat[1]*t2.mat[4] + t1.mat[2]*t2.mat[8]; mat[1] = t1.mat[0]*t2.mat[1] + t1.mat[1]*t2.mat[5] + t1.mat[2]*t2.mat[9]; mat[2] = t1.mat[0]*t2.mat[2] + t1.mat[1]*t2.mat[6] + t1.mat[2]*t2.mat[10]; mat[3] = t1.mat[0]*t2.mat[3] + t1.mat[1]*t2.mat[7] + t1.mat[2]*t2.mat[11] + t1.mat[3]; mat[4] = t1.mat[4]*t2.mat[0] + t1.mat[5]*t2.mat[4] + t1.mat[6]*t2.mat[8]; mat[5] = t1.mat[4]*t2.mat[1] + t1.mat[5]*t2.mat[5] + t1.mat[6]*t2.mat[9]; mat[6] = t1.mat[4]*t2.mat[2] + t1.mat[5]*t2.mat[6] + t1.mat[6]*t2.mat[10]; mat[7] = t1.mat[4]*t2.mat[3] + t1.mat[5]*t2.mat[7] + t1.mat[6]*t2.mat[11] + t1.mat[7]; mat[8] = t1.mat[8]*t2.mat[0] + t1.mat[9]*t2.mat[4] + t1.mat[10]*t2.mat[8]; mat[9] = t1.mat[8]*t2.mat[1] + t1.mat[9]*t2.mat[5] + t1.mat[10]*t2.mat[9]; mat[10] = t1.mat[8]*t2.mat[2] + t1.mat[9]*t2.mat[6] + t1.mat[10]*t2.mat[10]; mat[11] = t1.mat[8]*t2.mat[3] + t1.mat[9]*t2.mat[7] + t1.mat[10]*t2.mat[11] + t1.mat[11]; if (t1.isAffine()) { aff = true; mat[12] = mat[13] = mat[14] = 0; mat[15] = 1; } else { mat[12] = t1.mat[12]*t2.mat[0] + t1.mat[13]*t2.mat[4] + t1.mat[14]*t2.mat[8]; mat[13] = t1.mat[12]*t2.mat[1] + t1.mat[13]*t2.mat[5] + t1.mat[14]*t2.mat[9]; mat[14] = t1.mat[12]*t2.mat[2] + t1.mat[13]*t2.mat[6] + t1.mat[14]*t2.mat[10]; mat[15] = t1.mat[12]*t2.mat[3] + t1.mat[13]*t2.mat[7] + t1.mat[14]*t2.mat[11] + t1.mat[15]; } } else { mat[0] = t1.mat[0]*t2.mat[0] + t1.mat[1]*t2.mat[4] + t1.mat[2]*t2.mat[8] + t1.mat[3]*t2.mat[12]; mat[1] = t1.mat[0]*t2.mat[1] + t1.mat[1]*t2.mat[5] + t1.mat[2]*t2.mat[9] + t1.mat[3]*t2.mat[13]; mat[2] = t1.mat[0]*t2.mat[2] + t1.mat[1]*t2.mat[6] + t1.mat[2]*t2.mat[10] + t1.mat[3]*t2.mat[14]; mat[3] = t1.mat[0]*t2.mat[3] + t1.mat[1]*t2.mat[7] + t1.mat[2]*t2.mat[11] + t1.mat[3]*t2.mat[15]; mat[4] = t1.mat[4]*t2.mat[0] + t1.mat[5]*t2.mat[4] + t1.mat[6]*t2.mat[8] + t1.mat[7]*t2.mat[12]; mat[5] = t1.mat[4]*t2.mat[1] + t1.mat[5]*t2.mat[5] + t1.mat[6]*t2.mat[9] + t1.mat[7]*t2.mat[13]; mat[6] = t1.mat[4]*t2.mat[2] + t1.mat[5]*t2.mat[6] + t1.mat[6]*t2.mat[10] + t1.mat[7]*t2.mat[14]; mat[7] = t1.mat[4]*t2.mat[3] + t1.mat[5]*t2.mat[7] + t1.mat[6]*t2.mat[11] + t1.mat[7]*t2.mat[15]; mat[8] = t1.mat[8]*t2.mat[0] + t1.mat[9]*t2.mat[4] + t1.mat[10]*t2.mat[8] + t1.mat[11]*t2.mat[12]; mat[9] = t1.mat[8]*t2.mat[1] + t1.mat[9]*t2.mat[5] + t1.mat[10]*t2.mat[9] + t1.mat[11]*t2.mat[13]; mat[10] = t1.mat[8]*t2.mat[2] + t1.mat[9]*t2.mat[6] + t1.mat[10]*t2.mat[10] + t1.mat[11]*t2.mat[14]; mat[11] = t1.mat[8]*t2.mat[3] + t1.mat[9]*t2.mat[7] + t1.mat[10]*t2.mat[11] + t1.mat[11]*t2.mat[15]; if (t1.isAffine()) { mat[12] = t2.mat[12]; mat[13] = t2.mat[13]; mat[14] = t2.mat[14]; mat[15] = t2.mat[15]; } else { mat[12] = t1.mat[12]*t2.mat[0] + t1.mat[13]*t2.mat[4] + t1.mat[14]*t2.mat[8] + t1.mat[15]*t2.mat[12]; mat[13] = t1.mat[12]*t2.mat[1] + t1.mat[13]*t2.mat[5] + t1.mat[14]*t2.mat[9] + t1.mat[15]*t2.mat[13]; mat[14] = t1.mat[12]*t2.mat[2] + t1.mat[13]*t2.mat[6] + t1.mat[14]*t2.mat[10] + t1.mat[15]*t2.mat[14]; mat[15] = t1.mat[12]*t2.mat[3] + t1.mat[13]*t2.mat[7] + t1.mat[14]*t2.mat[11] + t1.mat[15]*t2.mat[15]; } } } else { double tmp0, tmp1, tmp2, tmp3; double tmp4, tmp5, tmp6, tmp7; double tmp8, tmp9, tmp10, tmp11; if (t2.isAffine()) { tmp0 = t1.mat[0]*t2.mat[0] + t1.mat[1]*t2.mat[4] + t1.mat[2]*t2.mat[8]; tmp1 = t1.mat[0]*t2.mat[1] + t1.mat[1]*t2.mat[5] + t1.mat[2]*t2.mat[9]; tmp2 = t1.mat[0]*t2.mat[2] + t1.mat[1]*t2.mat[6] + t1.mat[2]*t2.mat[10]; tmp3 = t1.mat[0]*t2.mat[3] + t1.mat[1]*t2.mat[7] + t1.mat[2]*t2.mat[11] + t1.mat[3]; tmp4 = t1.mat[4]*t2.mat[0] + t1.mat[5]*t2.mat[4] + t1.mat[6]*t2.mat[8]; tmp5 = t1.mat[4]*t2.mat[1] + t1.mat[5]*t2.mat[5] + t1.mat[6]*t2.mat[9]; tmp6 = t1.mat[4]*t2.mat[2] + t1.mat[5]*t2.mat[6] + t1.mat[6]*t2.mat[10]; tmp7 = t1.mat[4]*t2.mat[3] + t1.mat[5]*t2.mat[7] + t1.mat[6]*t2.mat[11] + t1.mat[7]; tmp8 = t1.mat[8]*t2.mat[0] + t1.mat[9]*t2.mat[4] + t1.mat[10]*t2.mat[8]; tmp9 = t1.mat[8]*t2.mat[1] + t1.mat[9]*t2.mat[5] + t1.mat[10]*t2.mat[9]; tmp10 = t1.mat[8]*t2.mat[2] + t1.mat[9]*t2.mat[6] + t1.mat[10]*t2.mat[10]; tmp11 = t1.mat[8]*t2.mat[3] + t1.mat[9]*t2.mat[7] + t1.mat[10]*t2.mat[11] + t1.mat[11]; if (t1.isAffine()) { aff = true; mat[12] = mat[13] = mat[14] = 0; mat[15] = 1; } else { double tmp12 = t1.mat[12]*t2.mat[0] + t1.mat[13]*t2.mat[4] + t1.mat[14]*t2.mat[8]; double tmp13 = t1.mat[12]*t2.mat[1] + t1.mat[13]*t2.mat[5] + t1.mat[14]*t2.mat[9]; double tmp14 = t1.mat[12]*t2.mat[2] + t1.mat[13]*t2.mat[6] + t1.mat[14]*t2.mat[10]; double tmp15 = t1.mat[12]*t2.mat[3] + t1.mat[13]*t2.mat[7] + t1.mat[14]*t2.mat[11] + t1.mat[15]; mat[12] = tmp12; mat[13] = tmp13; mat[14] = tmp14; mat[15] = tmp15; } } else { tmp0 = t1.mat[0]*t2.mat[0] + t1.mat[1]*t2.mat[4] + t1.mat[2]*t2.mat[8] + t1.mat[3]*t2.mat[12]; tmp1 = t1.mat[0]*t2.mat[1] + t1.mat[1]*t2.mat[5] + t1.mat[2]*t2.mat[9] + t1.mat[3]*t2.mat[13]; tmp2 = t1.mat[0]*t2.mat[2] + t1.mat[1]*t2.mat[6] + t1.mat[2]*t2.mat[10] + t1.mat[3]*t2.mat[14]; tmp3 = t1.mat[0]*t2.mat[3] + t1.mat[1]*t2.mat[7] + t1.mat[2]*t2.mat[11] + t1.mat[3]*t2.mat[15]; tmp4 = t1.mat[4]*t2.mat[0] + t1.mat[5]*t2.mat[4] + t1.mat[6]*t2.mat[8] + t1.mat[7]*t2.mat[12]; tmp5 = t1.mat[4]*t2.mat[1] + t1.mat[5]*t2.mat[5] + t1.mat[6]*t2.mat[9] + t1.mat[7]*t2.mat[13]; tmp6 = t1.mat[4]*t2.mat[2] + t1.mat[5]*t2.mat[6] + t1.mat[6]*t2.mat[10] + t1.mat[7]*t2.mat[14]; tmp7 = t1.mat[4]*t2.mat[3] + t1.mat[5]*t2.mat[7] + t1.mat[6]*t2.mat[11] + t1.mat[7]*t2.mat[15]; tmp8 = t1.mat[8]*t2.mat[0] + t1.mat[9]*t2.mat[4] + t1.mat[10]*t2.mat[8] + t1.mat[11]*t2.mat[12]; tmp9 = t1.mat[8]*t2.mat[1] + t1.mat[9]*t2.mat[5] + t1.mat[10]*t2.mat[9] + t1.mat[11]*t2.mat[13]; tmp10 = t1.mat[8]*t2.mat[2] + t1.mat[9]*t2.mat[6] + t1.mat[10]*t2.mat[10] + t1.mat[11]*t2.mat[14]; tmp11 = t1.mat[8]*t2.mat[3] + t1.mat[9]*t2.mat[7] + t1.mat[10]*t2.mat[11] + t1.mat[11]*t2.mat[15]; if (t1.isAffine()) { mat[12] = t2.mat[12]; mat[13] = t2.mat[13]; mat[14] = t2.mat[14]; mat[15] = t2.mat[15]; } else { double tmp12 = t1.mat[12]*t2.mat[0] + t1.mat[13]*t2.mat[4] + t1.mat[14]*t2.mat[8] + t1.mat[15]*t2.mat[12]; double tmp13 = t1.mat[12]*t2.mat[1] + t1.mat[13]*t2.mat[5] + t1.mat[14]*t2.mat[9] + t1.mat[15]*t2.mat[13]; double tmp14 = t1.mat[12]*t2.mat[2] + t1.mat[13]*t2.mat[6] + t1.mat[14]*t2.mat[10] + t1.mat[15]*t2.mat[14]; double tmp15 = t1.mat[12]*t2.mat[3] + t1.mat[13]*t2.mat[7] + t1.mat[14]*t2.mat[11] + t1.mat[15]*t2.mat[15]; mat[12] = tmp12; mat[13] = tmp13; mat[14] = tmp14; mat[15] = tmp15; } } mat[0] = tmp0; mat[1] = tmp1; mat[2] = tmp2; mat[3] = tmp3; mat[4] = tmp4; mat[5] = tmp5; mat[6] = tmp6; mat[7] = tmp7; mat[8] = tmp8; mat[9] = tmp9; mat[10] = tmp10; mat[11] = tmp11; } if (((t1.dirtyBits & CONGRUENT_BIT) == 0) && ((t1.type & CONGRUENT) != 0) && ((t2.dirtyBits & CONGRUENT_BIT) == 0) && ((t2.type & CONGRUENT) != 0)) { type = t1.type & t2.type; dirtyBits = t1.dirtyBits | t2.dirtyBits | CLASSIFY_BIT | ROTSCALESVD_DIRTY | RIGID_BIT; } else { if (aff) { dirtyBits = ORTHO_BIT | CONGRUENT_BIT | RIGID_BIT | CLASSIFY_BIT | ROTSCALESVD_DIRTY; } else { dirtyBits = ALL_DIRTY; } } if (autoNormalize) { normalize(); } } /** * Multiplies this transform by the inverse of transform t1. The final * value is placed into this matrix (this = this*t1^-1). * @param t1 the matrix whose inverse is computed. */ public final void mulInverse(Transform3D t1) { Transform3D t2 = new Transform3D(); t2.autoNormalize = false; t2.invert(t1); this.mul(t2); } /** * Multiplies transform t1 by the inverse of transform t2. The final * value is placed into this matrix (this = t1*t2^-1). * @param t1 the left transform in the multiplication * @param t2 the transform whose inverse is computed. */ public final void mulInverse(Transform3D t1, Transform3D t2) { Transform3D t3 = new Transform3D(); t3.autoNormalize = false; t3.invert(t2); this.mul(t1,t3); } /** * Multiplies transform t1 by the transpose of transform t2 and places * the result into this transform (this = t1 * transpose(t2)). * @param t1 the transform on the left hand side of the multiplication * @param t2 the transform whose transpose is computed */ public final void mulTransposeRight(Transform3D t1, Transform3D t2) { Transform3D t3 = new Transform3D(); t3.autoNormalize = false; t3.transpose(t2); mul(t1, t3); } /** * Multiplies the transpose of transform t1 by transform t2 and places * the result into this matrix (this = transpose(t1) * t2). * @param t1 the transform whose transpose is computed * @param t2 the transform on the right hand side of the multiplication */ public final void mulTransposeLeft(Transform3D t1, Transform3D t2){ Transform3D t3 = new Transform3D(); t3.autoNormalize = false; t3.transpose(t1); mul(t3, t2); } /** * Multiplies the transpose of transform t1 by the transpose of * transform t2 and places the result into this transform * (this = transpose(t1) * transpose(t2)). * @param t1 the transform on the left hand side of the multiplication * @param t2 the transform on the right hand side of the multiplication */ public final void mulTransposeBoth(Transform3D t1, Transform3D t2) { Transform3D t3 = new Transform3D(); Transform3D t4 = new Transform3D(); t3.autoNormalize = false; t4.autoNormalize = false; t3.transpose(t1); t4.transpose(t2); mul(t3, t4); } /** * Normalizes the rotational components (upper 3x3) of this matrix * in place using a Singular Value Decomposition (SVD). * This operation ensures that the column vectors of this matrix * are orthogonal to each other. The primary use of this method * is to correct for floating point errors that accumulate over * time when concatenating a large number of rotation matrices. * Note that the scale of the matrix is not altered by this method. */ public final void normalize() { // Issue 253: Unable to normalize matrices with infinity or NaN if (!isAffine() && isInfOrNaN()) { return; } if ((dirtyBits & (ROTATION_BIT|SVD_BIT)) != 0) { computeScaleRotation(true); } else if ((dirtyBits & (SCALE_BIT|SVD_BIT)) != 0) { computeScales(true); } mat[0] = rot[0]*scales[0]; mat[1] = rot[1]*scales[1]; mat[2] = rot[2]*scales[2]; mat[4] = rot[3]*scales[0]; mat[5] = rot[4]*scales[1]; mat[6] = rot[5]*scales[2]; mat[8] = rot[6]*scales[0]; mat[9] = rot[7]*scales[1]; mat[10] = rot[8]*scales[2]; dirtyBits |= CLASSIFY_BIT; dirtyBits &= ~ORTHO_BIT; type |= ORTHO; } /** * Normalizes the rotational components (upper 3x3) of transform t1 * using a Singular Value Decomposition (SVD), and places the result * into this transform. * This operation ensures that the column vectors of this matrix * are orthogonal to each other. The primary use of this method * is to correct for floating point errors that accumulate over * time when concatenating a large number of rotation matrices. * Note that the scale of the matrix is not altered by this method. * * @param t1 the source transform, which is not modified */ public final void normalize(Transform3D t1){ set(t1); normalize(); } /** * Normalizes the rotational components (upper 3x3) of this transform * in place using a Cross Product (CP) normalization. * This operation ensures that the column vectors of this matrix * are orthogonal to each other. The primary use of this method * is to correct for floating point errors that accumulate over * time when concatenating a large number of rotation matrices. * Note that the scale of the matrix is not altered by this method. */ public final void normalizeCP() { // Issue 253: Unable to normalize matrices with infinity or NaN if (!isAffine() && isInfOrNaN()) { return; } if ((dirtyBits & SCALE_BIT) != 0) { computeScales(false); } double mag = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; if (mag != 0) { mag = 1.0/Math.sqrt(mag); mat[0] = mat[0]*mag; mat[4] = mat[4]*mag; mat[8] = mat[8]*mag; } mag = mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]; if (mag != 0) { mag = 1.0/Math.sqrt(mag); mat[1] = mat[1]*mag; mat[5] = mat[5]*mag; mat[9] = mat[9]*mag; } mat[2] = (mat[4]*mat[9] - mat[5]*mat[8])*scales[0]; mat[6] = (mat[1]*mat[8] - mat[0]*mat[9])*scales[1]; mat[10] = (mat[0]*mat[5] - mat[1]*mat[4])*scales[2]; mat[0] *= scales[0]; mat[1] *= scales[0]; mat[4] *= scales[1]; mat[5] *= scales[1]; mat[8] *= scales[2]; mat[9] *= scales[2]; // leave the AFFINE bit dirtyBits |= CONGRUENT_BIT | RIGID_BIT | CLASSIFY_BIT | ROTATION_BIT | SVD_BIT; dirtyBits &= ~ORTHO_BIT; type |= ORTHO; } /** * Normalizes the rotational components (upper 3x3) of transform t1 * using a Cross Product (CP) normalization, and * places the result into this transform. * This operation ensures that the column vectors of this matrix * are orthogonal to each other. The primary use of this method * is to correct for floating point errors that accumulate over * time when concatenating a large number of rotation matrices. * Note that the scale of the matrix is not altered by this method. * * @param t1 the transform to be normalized */ public final void normalizeCP(Transform3D t1) { set(t1); normalizeCP(); } /** * Returns true if all of the data members of transform t1 are * equal to the corresponding data members in this Transform3D. * @param t1 the transform with which the comparison is made * @return true or false */ public boolean equals(Transform3D t1) { return (t1 != null) && (mat[0] == t1.mat[0]) && (mat[1] == t1.mat[1]) && (mat[2] == t1.mat[2]) && (mat[3] == t1.mat[3]) && (mat[4] == t1.mat[4]) && (mat[5] == t1.mat[5]) && (mat[6] == t1.mat[6]) && (mat[7] == t1.mat[7]) && (mat[8] == t1.mat[8]) && (mat[9] == t1.mat[9]) && (mat[10] == t1.mat[10]) && (mat[11] == t1.mat[11]) && (mat[12] == t1.mat[12]) && (mat[13] == t1.mat[13]) && (mat[14] == t1.mat[14]) && ( mat[15] == t1.mat[15]); } /** * Returns true if the Object o1 is of type Transform3D and all of the * data members of o1 are equal to the corresponding data members in * this Transform3D. * @param o1 the object with which the comparison is made. * @return true or false */ @Override public boolean equals(Object o1) { return (o1 instanceof Transform3D) && equals((Transform3D) o1); } /** * Returns true if the L-infinite distance between this matrix * and matrix m1 is less than or equal to the epsilon parameter, * otherwise returns false. The L-infinite * distance is equal to * MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs[(this.m(i,j) - m1.m(i,j)] * @param t1 the transform to be compared to this transform * @param epsilon the threshold value */ public boolean epsilonEquals(Transform3D t1, double epsilon) { double diff; for (int i=0 ; i<16 ; i++) { diff = mat[i] - t1.mat[i]; if ((diff < 0 ? -diff : diff) > epsilon) { return false; } } return true; } /** * Returns a hash code value based on the data values in this * object. Two different Transform3D objects with identical data * values (i.e., Transform3D.equals returns true) will return the * same hash number. Two Transform3D objects with different data * members may return the same hash value, although this is not * likely. * @return the integer hash code value */ @Override public int hashCode() { long bits = 1L; for (int i = 0; i < 16; i++) { bits = J3dHash.mixDoubleBits(bits, mat[i]); } return J3dHash.finish(bits); } /** * Transform the vector vec using this transform and place the * result into vecOut. * @param vec the double precision vector to be transformed * @param vecOut the vector into which the transformed values are placed */ public final void transform(Vector4d vec, Vector4d vecOut) { if (vec != vecOut) { vecOut.x = (mat[0]*vec.x + mat[1]*vec.y + mat[2]*vec.z + mat[3]*vec.w); vecOut.y = (mat[4]*vec.x + mat[5]*vec.y + mat[6]*vec.z + mat[7]*vec.w); vecOut.z = (mat[8]*vec.x + mat[9]*vec.y + mat[10]*vec.z + mat[11]*vec.w); vecOut.w = (mat[12]*vec.x + mat[13]*vec.y + mat[14]*vec.z + mat[15]*vec.w); } else { transform(vec); } } /** * Transform the vector vec using this Transform and place the * result back into vec. * @param vec the double precision vector to be transformed */ public final void transform(Vector4d vec) { double x = (mat[0]*vec.x + mat[1]*vec.y + mat[2]*vec.z + mat[3]*vec.w); double y = (mat[4]*vec.x + mat[5]*vec.y + mat[6]*vec.z + mat[7]*vec.w); double z = (mat[8]*vec.x + mat[9]*vec.y + mat[10]*vec.z + mat[11]*vec.w); vec.w = (mat[12]*vec.x + mat[13]*vec.y + mat[14]*vec.z + mat[15]*vec.w); vec.x = x; vec.y = y; vec.z = z; } /** * Transform the vector vec using this Transform and place the * result into vecOut. * @param vec the single precision vector to be transformed * @param vecOut the vector into which the transformed values are placed */ public final void transform(Vector4f vec, Vector4f vecOut) { if (vecOut != vec) { vecOut.x = (float) (mat[0]*vec.x + mat[1]*vec.y + mat[2]*vec.z + mat[3]*vec.w); vecOut.y = (float) (mat[4]*vec.x + mat[5]*vec.y + mat[6]*vec.z + mat[7]*vec.w); vecOut.z = (float) (mat[8]*vec.x + mat[9]*vec.y + mat[10]*vec.z + mat[11]*vec.w); vecOut.w = (float) (mat[12]*vec.x + mat[13]*vec.y + mat[14]*vec.z + mat[15]*vec.w); } else { transform(vec); } } /** * Transform the vector vec using this Transform and place the * result back into vec. * @param vec the single precision vector to be transformed */ public final void transform(Vector4f vec) { float x = (float) (mat[0]*vec.x + mat[1]*vec.y + mat[2]*vec.z + mat[3]*vec.w); float y = (float) (mat[4]*vec.x + mat[5]*vec.y + mat[6]*vec.z + mat[7]*vec.w); float z = (float) (mat[8]*vec.x + mat[9]*vec.y + mat[10]*vec.z + mat[11]*vec.w); vec.w = (float) (mat[12]*vec.x + mat[13]*vec.y + mat[14]*vec.z + mat[15]*vec.w); vec.x = x; vec.y = y; vec.z = z; } /** * Transforms the point parameter with this transform and * places the result into pointOut. The fourth element of the * point input paramter is assumed to be one. * @param point the input point to be transformed * @param pointOut the transformed point */ public final void transform(Point3d point, Point3d pointOut) { if (point != pointOut) { pointOut.x = mat[0]*point.x + mat[1]*point.y + mat[2]*point.z + mat[3]; pointOut.y = mat[4]*point.x + mat[5]*point.y + mat[6]*point.z + mat[7]; pointOut.z = mat[8]*point.x + mat[9]*point.y + mat[10]*point.z + mat[11]; } else { transform(point); } } /** * Transforms the point parameter with this transform and * places the result back into point. The fourth element of the * point input paramter is assumed to be one. * @param point the input point to be transformed */ public final void transform(Point3d point) { double x = mat[0]*point.x + mat[1]*point.y + mat[2]*point.z + mat[3]; double y = mat[4]*point.x + mat[5]*point.y + mat[6]*point.z + mat[7]; point.z = mat[8]*point.x + mat[9]*point.y + mat[10]*point.z + mat[11]; point.x = x; point.y = y; } /** * Transforms the normal parameter by this transform and places the value * into normalOut. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed * @param normalOut the transformed normal */ public final void transform(Vector3d normal, Vector3d normalOut) { if (normalOut != normal) { normalOut.x = mat[0]*normal.x + mat[1]*normal.y + mat[2]*normal.z; normalOut.y = mat[4]*normal.x + mat[5]*normal.y + mat[6]*normal.z; normalOut.z = mat[8]*normal.x + mat[9]*normal.y + mat[10]*normal.z; } else { transform(normal); } } /** * Transforms the normal parameter by this transform and places the value * back into normal. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed */ public final void transform(Vector3d normal) { double x = mat[0]*normal.x + mat[1]*normal.y + mat[2]*normal.z; double y = mat[4]*normal.x + mat[5]*normal.y + mat[6]*normal.z; normal.z = mat[8]*normal.x + mat[9]*normal.y + mat[10]*normal.z; normal.x = x; normal.y = y; } /** * Transforms the point parameter with this transform and * places the result into pointOut. The fourth element of the * point input paramter is assumed to be one. * @param point the input point to be transformed * @param pointOut the transformed point */ public final void transform(Point3f point, Point3f pointOut) { if (point != pointOut) { pointOut.x = (float)(mat[0]*point.x + mat[1]*point.y + mat[2]*point.z + mat[3]); pointOut.y = (float)(mat[4]*point.x + mat[5]*point.y + mat[6]*point.z + mat[7]); pointOut.z = (float)(mat[8]*point.x + mat[9]*point.y + mat[10]*point.z + mat[11]); } else { transform(point); } } /** * Transforms the point parameter with this transform and * places the result back into point. The fourth element of the * point input paramter is assumed to be one. * @param point the input point to be transformed */ public final void transform(Point3f point) { float x = (float) (mat[0]*point.x + mat[1]*point.y + mat[2]*point.z + mat[3]); float y = (float) (mat[4]*point.x + mat[5]*point.y + mat[6]*point.z + mat[7]); point.z = (float) (mat[8]*point.x + mat[9]*point.y + mat[10]*point.z + mat[11]); point.x = x; point.y = y; } /** * Transforms the normal parameter by this transform and places the value * into normalOut. The fourth element of the normal is assumed to be zero. * Note: For correct lighting results, if a transform has uneven scaling * surface normals should transformed by the inverse transpose of * the transform. This the responsibility of the application and is not * done automatically by this method. * @param normal the input normal to be transformed * @param normalOut the transformed normal */ public final void transform(Vector3f normal, Vector3f normalOut) { if (normal != normalOut) { normalOut.x = (float) (mat[0]*normal.x + mat[1]*normal.y + mat[2]*normal.z); normalOut.y = (float) (mat[4]*normal.x + mat[5]*normal.y + mat[6]*normal.z); normalOut.z = (float) (mat[8]*normal.x + mat[9]*normal.y + mat[10]*normal.z); } else { transform(normal); } } /** * Transforms the normal parameter by this transform and places the value * back into normal. The fourth element of the normal is assumed to be zero. * Note: For correct lighting results, if a transform has uneven scaling * surface normals should transformed by the inverse transpose of * the transform. This the responsibility of the application and is not * done automatically by this method. * @param normal the input normal to be transformed */ public final void transform(Vector3f normal) { float x = (float) (mat[0]*normal.x + mat[1]*normal.y + mat[2]*normal.z); float y = (float) (mat[4]*normal.x + mat[5]*normal.y + mat[6]*normal.z); normal.z = (float) (mat[8]*normal.x + mat[9]*normal.y + mat[10]*normal.z); normal.x = x; normal.y = y; } /** * Replaces the upper 3x3 matrix values of this transform with the * values in the matrix m1. * @param m1 the matrix that will be the new upper 3x3 */ public final void setRotationScale(Matrix3f m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Replaces the upper 3x3 matrix values of this transform with the * values in the matrix m1. * @param m1 the matrix that will be the new upper 3x3 */ public final void setRotationScale(Matrix3d m1) { mat[0] = m1.m00; mat[1] = m1.m01; mat[2] = m1.m02; mat[4] = m1.m10; mat[5] = m1.m11; mat[6] = m1.m12; mat[8] = m1.m20; mat[9] = m1.m21; mat[10] = m1.m22; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Scales transform t1 by a Uniform scale matrix with scale * factor s and then adds transform t2 (this = S*t1 + t2). * @param s the scale factor * @param t1 the transform to be scaled * @param t2 the transform to be added */ public final void scaleAdd(double s, Transform3D t1, Transform3D t2) { for (int i=0 ; i<16 ; i++) { mat[i] = s*t1.mat[i] + t2.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Scales this transform by a Uniform scale matrix with scale factor * s and then adds transform t1 (this = S*this + t1). * @param s the scale factor * @param t1 the transform to be added */ public final void scaleAdd(double s, Transform3D t1) { for (int i=0 ; i<16 ; i++) { mat[i] = s*mat[i] + t1.mat[i]; } dirtyBits = ALL_DIRTY; if (autoNormalize) { normalize(); } } /** * Gets the upper 3x3 values of this matrix and places them into * the matrix m1. * @param m1 the matrix that will hold the values */ public final void getRotationScale(Matrix3f m1) { m1.m00 = (float) mat[0]; m1.m01 = (float) mat[1]; m1.m02 = (float) mat[2]; m1.m10 = (float) mat[4]; m1.m11 = (float) mat[5]; m1.m12 = (float) mat[6]; m1.m20 = (float) mat[8]; m1.m21 = (float) mat[9]; m1.m22 = (float) mat[10]; } /** * Gets the upper 3x3 values of this matrix and places them into * the matrix m1. * @param m1 the matrix that will hold the values */ public final void getRotationScale(Matrix3d m1) { m1.m00 = mat[0]; m1.m01 = mat[1]; m1.m02 = mat[2]; m1.m10 = mat[4]; m1.m11 = mat[5]; m1.m12 = mat[6]; m1.m20 = mat[8]; m1.m21 = mat[9]; m1.m22 = mat[10]; } /** * Helping function that specifies the position and orientation of a * view matrix. The inverse of this transform can be used to control * the ViewPlatform object within the scene graph. * @param eye the location of the eye * @param center a point in the virtual world where the eye is looking * @param up an up vector specifying the frustum's up direction */ public void lookAt(Point3d eye, Point3d center, Vector3d up) { double forwardx,forwardy,forwardz,invMag; double upx,upy,upz; double sidex,sidey,sidez; forwardx = eye.x - center.x; forwardy = eye.y - center.y; forwardz = eye.z - center.z; invMag = 1.0/Math.sqrt( forwardx*forwardx + forwardy*forwardy + forwardz*forwardz); forwardx = forwardx*invMag; forwardy = forwardy*invMag; forwardz = forwardz*invMag; invMag = 1.0/Math.sqrt( up.x*up.x + up.y*up.y + up.z*up.z); upx = up.x*invMag; upy = up.y*invMag; upz = up.z*invMag; // side = Up cross forward sidex = upy*forwardz-forwardy*upz; sidey = upz*forwardx-upx*forwardz; sidez = upx*forwardy-upy*forwardx; invMag = 1.0/Math.sqrt( sidex*sidex + sidey*sidey + sidez*sidez); sidex *= invMag; sidey *= invMag; sidez *= invMag; // recompute up = forward cross side upx = forwardy*sidez-sidey*forwardz; upy = forwardz*sidex-forwardx*sidez; upz = forwardx*sidey-forwardy*sidex; // transpose because we calculated the inverse of what we want mat[0] = sidex; mat[1] = sidey; mat[2] = sidez; mat[4] = upx; mat[5] = upy; mat[6] = upz; mat[8] = forwardx; mat[9] = forwardy; mat[10] = forwardz; mat[3] = -eye.x*mat[0] + -eye.y*mat[1] + -eye.z*mat[2]; mat[7] = -eye.x*mat[4] + -eye.y*mat[5] + -eye.z*mat[6]; mat[11] = -eye.x*mat[8] + -eye.y*mat[9] + -eye.z*mat[10]; mat[12] = mat[13] = mat[14] = 0; mat[15] = 1; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Creates a perspective projection transform that mimics a standard, * camera-based, * view-model. This transform maps coordinates from Eye Coordinates (EC) * to Clipping Coordinates (CC). Note that unlike the similar function * in OpenGL, the clipping coordinates generated by the resulting * transform are in a right-handed coordinate system * (as are all other coordinate systems in Java 3D). *

* The frustum function-call establishes a view model with the eye * at the apex of a symmetric view frustum. The arguments * define the frustum and its associated perspective projection: * (left, bottom, -near) and (right, top, -near) specify the * point on the near clipping plane that maps onto the * lower-left and upper-right corners of the window respectively, * assuming the eye is located at (0, 0, 0). * @param left the vertical line on the left edge of the near * clipping plane mapped to the left edge of the graphics window * @param right the vertical line on the right edge of the near * clipping plane mapped to the right edge of the graphics window * @param bottom the horizontal line on the bottom edge of the near * clipping plane mapped to the bottom edge of the graphics window * @param top the horizontal line on the top edge of the near * @param near the distance to the frustum's near clipping plane. * This value must be positive, (the value -near is the location of the * near clip plane). * @param far the distance to the frustum's far clipping plane. * This value must be positive, and must be greater than near. */ public void frustum(double left, double right, double bottom, double top, double near, double far) { double dx = 1/(right - left); double dy = 1/(top - bottom); double dz = 1/(far - near); mat[0] = (2.0*near)*dx; mat[5] = (2.0*near)*dy; mat[10] = (far+near)*dz; mat[2] = (right+left)*dx; mat[6] = (top+bottom)*dy; mat[11] = (2.0*far*near)*dz; mat[14] = -1.0; mat[1] = mat[3] = mat[4] = mat[7] = mat[8] = mat[9] = mat[12] = mat[13] = mat[15] = 0; // Matrix is a projection transform type = 0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Creates a perspective projection transform that mimics a standard, * camera-based, * view-model. This transform maps coordinates from Eye Coordinates (EC) * to Clipping Coordinates (CC). Note that unlike the similar function * in OpenGL, the clipping coordinates generated by the resulting * transform are in a right-handed coordinate system * (as are all other coordinate systems in Java 3D). Also note that the * field of view is specified in radians. * @param fovx specifies the field of view in the x direction, in radians * @param aspect specifies the aspect ratio and thus the field of * view in the x direction. The aspect ratio is the ratio of x to y, * or width to height. * @param zNear the distance to the frustum's near clipping plane. * This value must be positive, (the value -zNear is the location of the * near clip plane). * @param zFar the distance to the frustum's far clipping plane */ public void perspective(double fovx, double aspect, double zNear, double zFar) { double sine, cotangent, deltaZ; double half_fov = fovx * 0.5; double x, y; Vector3d v1, v2, v3, v4; Vector3d norm = new Vector3d(); deltaZ = zFar - zNear; sine = Math.sin(half_fov); // if ((deltaZ == 0.0) || (sine == 0.0) || (aspect == 0.0)) { // return; // } cotangent = Math.cos(half_fov) / sine; mat[0] = cotangent; mat[5] = cotangent * aspect; mat[10] = (zFar + zNear) / deltaZ; mat[11] = 2.0 * zNear * zFar / deltaZ; mat[14] = -1.0; mat[1] = mat[2] = mat[3] = mat[4] = mat[6] = mat[7] = mat[8] = mat[9] = mat[12] = mat[13] = mat[15] = 0; // Matrix is a projection transform type = 0; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * Creates an orthographic projection transform that mimics a standard, * camera-based, * view-model. This transform maps coordinates from Eye Coordinates (EC) * to Clipping Coordinates (CC). Note that unlike the similar function * in OpenGL, the clipping coordinates generated by the resulting * transform are in a right-handed coordinate system * (as are all other coordinate systems in Java 3D). * @param left the vertical line on the left edge of the near * clipping plane mapped to the left edge of the graphics window * @param right the vertical line on the right edge of the near * clipping plane mapped to the right edge of the graphics window * @param bottom the horizontal line on the bottom edge of the near * clipping plane mapped to the bottom edge of the graphics window * @param top the horizontal line on the top edge of the near * clipping plane mapped to the top edge of the graphics window * @param near the distance to the frustum's near clipping plane * (the value -near is the location of the near clip plane) * @param far the distance to the frustum's far clipping plane */ public void ortho(double left, double right, double bottom, double top, double near, double far) { double deltax = 1/(right - left); double deltay = 1/(top - bottom); double deltaz = 1/(far - near); // if ((deltax == 0.0) || (deltay == 0.0) || (deltaz == 0.0)) { // return; // } mat[0] = 2.0 * deltax; mat[3] = -(right + left) * deltax; mat[5] = 2.0 * deltay; mat[7] = -(top + bottom) * deltay; mat[10] = 2.0 * deltaz; mat[11] = (far + near) * deltaz; mat[1] = mat[2] = mat[4] = mat[6] = mat[8] = mat[9] = mat[12] = mat[13] = mat[14] = 0; mat[15] = 1; // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; } /** * get the scaling factor of matrix in this transform, * use for distance scaling */ double getDistanceScale() { // The caller know that this matrix is affine // orthogonal before invoke this procedure if ((dirtyBits & SCALE_BIT) != 0) { double max = mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]; if (((dirtyBits & CONGRUENT_BIT) == 0) && ((type & CONGRUENT) != 0)) { // in most case it is congruent return Math.sqrt(max); } double tmp = mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]; if (tmp > max) { max = tmp; } tmp = mat[2]*mat[2] + mat[6]*mat[6] + mat[10]*mat[10]; return Math.sqrt((tmp > max) ? tmp : max); } return max3(scales); } static private void mat_mul(double[] m1, double[] m2, double[] m3) { double[] result = m3; if ((m1 == m3) || (m2 == m3)) { result = new double[9]; } result[0] = m1[0]*m2[0] + m1[1]*m2[3] + m1[2]*m2[6]; result[1] = m1[0]*m2[1] + m1[1]*m2[4] + m1[2]*m2[7]; result[2] = m1[0]*m2[2] + m1[1]*m2[5] + m1[2]*m2[8]; result[3] = m1[3]*m2[0] + m1[4]*m2[3] + m1[5]*m2[6]; result[4] = m1[3]*m2[1] + m1[4]*m2[4] + m1[5]*m2[7]; result[5] = m1[3]*m2[2] + m1[4]*m2[5] + m1[5]*m2[8]; result[6] = m1[6]*m2[0] + m1[7]*m2[3] + m1[8]*m2[6]; result[7] = m1[6]*m2[1] + m1[7]*m2[4] + m1[8]*m2[7]; result[8] = m1[6]*m2[2] + m1[7]*m2[5] + m1[8]*m2[8]; if (result != m3) { for(int i=0;i<9;i++) { m3[i] = result[i]; } } } static private void transpose_mat(double[] in, double[] out) { out[0] = in[0]; out[1] = in[3]; out[2] = in[6]; out[3] = in[1]; out[4] = in[4]; out[5] = in[7]; out[6] = in[2]; out[7] = in[5]; out[8] = in[8]; } final static private void multipleScale(double m[] , double s[]) { m[0] *= s[0]; m[1] *= s[0]; m[2] *= s[0]; m[4] *= s[1]; m[5] *= s[1]; m[6] *= s[1]; m[8] *= s[2]; m[9] *= s[2]; m[10] *= s[2]; } private void compute_svd(Transform3D matrix, double[] outScale, double[] outRot) { int i,j; double g,scale; double m[] = new double[9]; // if (!svdAllocd) { double[] u1 = new double[9]; double[] v1 = new double[9]; double[] t1 = new double[9]; double[] t2 = new double[9]; // double[] ts = new double[9]; // double[] svdTmp = new double[9]; It is replaced by t1 double[] svdRot = new double[9]; // double[] single_values = new double[3]; replaced by t2 double[] e = new double[3]; double[] svdScales = new double[3]; // XXXX: initialize to 0's if alread allocd? Should not have to, since // no operations depend on these being init'd to zero. int converged, negCnt=0; double cs,sn; double c1,c2,c3,c4; double s1,s2,s3,s4; double cl1,cl2,cl3; svdRot[0] = m[0] = matrix.mat[0]; svdRot[1] = m[1] = matrix.mat[1]; svdRot[2] = m[2] = matrix.mat[2]; svdRot[3] = m[3] = matrix.mat[4]; svdRot[4] = m[4] = matrix.mat[5]; svdRot[5] = m[5] = matrix.mat[6]; svdRot[6] = m[6] = matrix.mat[8]; svdRot[7] = m[7] = matrix.mat[9]; svdRot[8] = m[8] = matrix.mat[10]; // u1 if( m[3]*m[3] < EPS ) { u1[0] = 1.0; u1[1] = 0.0; u1[2] = 0.0; u1[3] = 0.0; u1[4] = 1.0; u1[5] = 0.0; u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0; } else if( m[0]*m[0] < EPS ) { t1[0] = m[0]; t1[1] = m[1]; t1[2] = m[2]; m[0] = m[3]; m[1] = m[4]; m[2] = m[5]; m[3] = -t1[0]; // zero m[4] = -t1[1]; m[5] = -t1[2]; u1[0] = 0.0; u1[1] = 1.0; u1[2] = 0.0; u1[3] = -1.0; u1[4] = 0.0; u1[5] = 0.0; u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0; } else { g = 1.0/Math.sqrt(m[0]*m[0] + m[3]*m[3]); c1 = m[0]*g; s1 = m[3]*g; t1[0] = c1*m[0] + s1*m[3]; t1[1] = c1*m[1] + s1*m[4]; t1[2] = c1*m[2] + s1*m[5]; m[3] = -s1*m[0] + c1*m[3]; // zero m[4] = -s1*m[1] + c1*m[4]; m[5] = -s1*m[2] + c1*m[5]; m[0] = t1[0]; m[1] = t1[1]; m[2] = t1[2]; u1[0] = c1; u1[1] = s1; u1[2] = 0.0; u1[3] = -s1; u1[4] = c1; u1[5] = 0.0; u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0; } // u2 if( m[6]*m[6] < EPS ) { } else if( m[0]*m[0] < EPS ){ t1[0] = m[0]; t1[1] = m[1]; t1[2] = m[2]; m[0] = m[6]; m[1] = m[7]; m[2] = m[8]; m[6] = -t1[0]; // zero m[7] = -t1[1]; m[8] = -t1[2]; t1[0] = u1[0]; t1[1] = u1[1]; t1[2] = u1[2]; u1[0] = u1[6]; u1[1] = u1[7]; u1[2] = u1[8]; u1[6] = -t1[0]; // zero u1[7] = -t1[1]; u1[8] = -t1[2]; } else { g = 1.0/Math.sqrt(m[0]*m[0] + m[6]*m[6]); c2 = m[0]*g; s2 = m[6]*g; t1[0] = c2*m[0] + s2*m[6]; t1[1] = c2*m[1] + s2*m[7]; t1[2] = c2*m[2] + s2*m[8]; m[6] = -s2*m[0] + c2*m[6]; m[7] = -s2*m[1] + c2*m[7]; m[8] = -s2*m[2] + c2*m[8]; m[0] = t1[0]; m[1] = t1[1]; m[2] = t1[2]; t1[0] = c2*u1[0]; t1[1] = c2*u1[1]; u1[2] = s2; t1[6] = -u1[0]*s2; t1[7] = -u1[1]*s2; u1[8] = c2; u1[0] = t1[0]; u1[1] = t1[1]; u1[6] = t1[6]; u1[7] = t1[7]; } // v1 if( m[2]*m[2] < EPS ) { v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0; v1[3] = 0.0; v1[4] = 1.0; v1[5] = 0.0; v1[6] = 0.0; v1[7] = 0.0; v1[8] = 1.0; } else if( m[1]*m[1] < EPS ) { t1[2] = m[2]; t1[5] = m[5]; t1[8] = m[8]; m[2] = -m[1]; m[5] = -m[4]; m[8] = -m[7]; m[1] = t1[2]; // zero m[4] = t1[5]; m[7] = t1[8]; v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0; v1[3] = 0.0; v1[4] = 0.0; v1[5] =-1.0; v1[6] = 0.0; v1[7] = 1.0; v1[8] = 0.0; } else { g = 1.0/Math.sqrt(m[1]*m[1] + m[2]*m[2]); c3 = m[1]*g; s3 = m[2]*g; t1[1] = c3*m[1] + s3*m[2]; // can assign to m[1]? m[2] =-s3*m[1] + c3*m[2]; // zero m[1] = t1[1]; t1[4] = c3*m[4] + s3*m[5]; m[5] =-s3*m[4] + c3*m[5]; m[4] = t1[4]; t1[7] = c3*m[7] + s3*m[8]; m[8] =-s3*m[7] + c3*m[8]; m[7] = t1[7]; v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0; v1[3] = 0.0; v1[4] = c3; v1[5] = -s3; v1[6] = 0.0; v1[7] = s3; v1[8] = c3; } // u3 if( m[7]*m[7] < EPS ) { } else if( m[4]*m[4] < EPS ) { t1[3] = m[3]; t1[4] = m[4]; t1[5] = m[5]; m[3] = m[6]; // zero m[4] = m[7]; m[5] = m[8]; m[6] = -t1[3]; // zero m[7] = -t1[4]; // zero m[8] = -t1[5]; t1[3] = u1[3]; t1[4] = u1[4]; t1[5] = u1[5]; u1[3] = u1[6]; u1[4] = u1[7]; u1[5] = u1[8]; u1[6] = -t1[3]; // zero u1[7] = -t1[4]; u1[8] = -t1[5]; } else { g = 1.0/Math.sqrt(m[4]*m[4] + m[7]*m[7]); c4 = m[4]*g; s4 = m[7]*g; t1[3] = c4*m[3] + s4*m[6]; m[6] =-s4*m[3] + c4*m[6]; // zero m[3] = t1[3]; t1[4] = c4*m[4] + s4*m[7]; m[7] =-s4*m[4] + c4*m[7]; m[4] = t1[4]; t1[5] = c4*m[5] + s4*m[8]; m[8] =-s4*m[5] + c4*m[8]; m[5] = t1[5]; t1[3] = c4*u1[3] + s4*u1[6]; u1[6] =-s4*u1[3] + c4*u1[6]; u1[3] = t1[3]; t1[4] = c4*u1[4] + s4*u1[7]; u1[7] =-s4*u1[4] + c4*u1[7]; u1[4] = t1[4]; t1[5] = c4*u1[5] + s4*u1[8]; u1[8] =-s4*u1[5] + c4*u1[8]; u1[5] = t1[5]; } t2[0] = m[0]; t2[1] = m[4]; t2[2] = m[8]; e[0] = m[1]; e[1] = m[5]; if( e[0]*e[0]>EPS || e[1]*e[1]>EPS ) { compute_qr( t2, e, u1, v1); } svdScales[0] = t2[0]; svdScales[1] = t2[1]; svdScales[2] = t2[2]; // Do some optimization here. If scale is unity, simply return the rotation matric. if(almostOne(Math.abs(svdScales[0])) && almostOne(Math.abs(svdScales[1])) && almostOne(Math.abs(svdScales[2]))) { for(i=0;i<3;i++) if(svdScales[i]<0.0) negCnt++; if((negCnt==0)||(negCnt==2)) { //System.err.println("Optimize!!"); outScale[0] = outScale[1] = outScale[2] = 1.0; for(i=0;i<9;i++) outRot[i] = svdRot[i]; return; } } // XXXX: could eliminate use of t1 and t1 by making a new method which // transposes and multiplies two matricies transpose_mat(u1, t1); transpose_mat(v1, t2); svdReorder( m, t1, t2, svdRot, svdScales, outRot, outScale); } private void svdReorder( double[] m, double[] t1, double[] t2, double[] rot, double[] scales, double[] outRot, double[] outScale) { int in0, in1, in2, index,i; int[] svdOut = new int[3]; double[] svdMag = new double[3]; // check for rotation information in the scales if(scales[0] < 0.0 ) { // move the rotation info to rotation matrix scales[0] = -scales[0]; t2[0] = -t2[0]; t2[1] = -t2[1]; t2[2] = -t2[2]; } if(scales[1] < 0.0 ) { // move the rotation info to rotation matrix scales[1] = -scales[1]; t2[3] = -t2[3]; t2[4] = -t2[4]; t2[5] = -t2[5]; } if(scales[2] < 0.0 ) { // move the rotation info to rotation matrix scales[2] = -scales[2]; t2[6] = -t2[6]; t2[7] = -t2[7]; t2[8] = -t2[8]; } mat_mul(t1,t2,rot); // check for equal scales case and do not reorder if(almostEqual(Math.abs(scales[0]), Math.abs(scales[1])) && almostEqual(Math.abs(scales[1]), Math.abs(scales[2])) ){ for(i=0;i<9;i++){ outRot[i] = rot[i]; } for(i=0;i<3;i++){ outScale[i] = scales[i]; } }else { // sort the order of the results of SVD if( scales[0] > scales[1]) { if( scales[0] > scales[2] ) { if( scales[2] > scales[1] ) { svdOut[0] = 0; svdOut[1] = 2; svdOut[2] = 1; // xzy } else { svdOut[0] = 0; svdOut[1] = 1; svdOut[2] = 2; // xyz } } else { svdOut[0] = 2; svdOut[1] = 0; svdOut[2] = 1; // zxy } } else { // y > x if( scales[1] > scales[2] ) { if( scales[2] > scales[0] ) { svdOut[0] = 1; svdOut[1] = 2; svdOut[2] = 0; // yzx } else { svdOut[0] = 1; svdOut[1] = 0; svdOut[2] = 2; // yxz } } else { svdOut[0] = 2; svdOut[1] = 1; svdOut[2] = 0; // zyx } } // sort the order of the input matrix svdMag[0] = (m[0]*m[0] + m[1]*m[1] + m[2]*m[2]); svdMag[1] = (m[3]*m[3] + m[4]*m[4] + m[5]*m[5]); svdMag[2] = (m[6]*m[6] + m[7]*m[7] + m[8]*m[8]); if( svdMag[0] > svdMag[1]) { if( svdMag[0] > svdMag[2] ) { if( svdMag[2] > svdMag[1] ) { // 0 - 2 - 1 in0 = 0; in2 = 1; in1 = 2;// xzy } else { // 0 - 1 - 2 in0 = 0; in1 = 1; in2 = 2; // xyz } } else { // 2 - 0 - 1 in2 = 0; in0 = 1; in1 = 2; // zxy } } else { // y > x 1>0 if( svdMag[1] > svdMag[2] ) { // 1>2 if( svdMag[2] > svdMag[0] ) { // 2>0 // 1 - 2 - 0 in1 = 0; in2 = 1; in0 = 2; // yzx } else { // 1 - 0 - 2 in1 = 0; in0 = 1; in2 = 2; // yxz } } else { // 2 - 1 - 0 in2 = 0; in1 = 1; in0 = 2; // zyx } } index = svdOut[in0]; outScale[0] = scales[index]; index = svdOut[in1]; outScale[1] = scales[index]; index = svdOut[in2]; outScale[2] = scales[index]; index = svdOut[in0]; if (outRot == null) { MasterControl.getCoreLogger().severe("outRot == null"); } if (rot == null) { MasterControl.getCoreLogger().severe("rot == null"); } outRot[0] = rot[index]; index = svdOut[in0]+3; outRot[0+3] = rot[index]; index = svdOut[in0]+6; outRot[0+6] = rot[index]; index = svdOut[in1]; outRot[1] = rot[index]; index = svdOut[in1]+3; outRot[1+3] = rot[index]; index = svdOut[in1]+6; outRot[1+6] = rot[index]; index = svdOut[in2]; outRot[2] = rot[index]; index = svdOut[in2]+3; outRot[2+3] = rot[index]; index = svdOut[in2]+6; outRot[2+6] = rot[index]; } } private int compute_qr( double[] s, double[] e, double[] u, double[] v) { int i,j,k; boolean converged; double shift,ssmin,ssmax,r; double utemp,vtemp; double f,g; final int MAX_INTERATIONS = 10; final double CONVERGE_TOL = 4.89E-15; double[] cosl = new double[2]; double[] cosr = new double[2]; double[] sinl = new double[2]; double[] sinr = new double[2]; double[] qr_m = new double[9]; double c_b48 = 1.; double c_b71 = -1.; int first; converged = false; first = 1; if( Math.abs(e[1]) < CONVERGE_TOL || Math.abs(e[0]) < CONVERGE_TOL) converged = true; for(k=0;k b ? a : b); } static final double min( double a, double b) { return ( a < b ? a : b); } static final double d_sign(double a, double b) { double x = (a >= 0 ? a : - a); return( b >= 0 ? x : -x); } static final double compute_shift( double f, double g, double h) { double d__1, d__2; double fhmn, fhmx, c, fa, ga, ha, as, at, au; double ssmin; fa = Math.abs(f); ga = Math.abs(g); ha = Math.abs(h); fhmn = min(fa,ha); fhmx = max(fa,ha); if (fhmn == 0.) { ssmin = 0.; if (fhmx == 0.) { } else { d__1 = min(fhmx,ga) / max(fhmx,ga); } } else { if (ga < fhmx) { as = fhmn / fhmx + 1.; at = (fhmx - fhmn) / fhmx; d__1 = ga / fhmx; au = d__1 * d__1; c = 2. / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au)); ssmin = fhmn * c; } else { au = fhmx / ga; if (au == 0.) { ssmin = fhmn * fhmx / ga; } else { as = fhmn / fhmx + 1.; at = (fhmx - fhmn) / fhmx; d__1 = as * au; d__2 = at * au; c = 1. / (Math.sqrt(d__1 * d__1 + 1.) + Math.sqrt(d__2 * d__2 + 1.)); ssmin = fhmn * c * au; ssmin += ssmin; } } } return(ssmin); } static int compute_2X2( double f, double g, double h, double[] single_values, double[] snl, double[] csl, double[] snr, double[] csr, int index) { double c_b3 = 2.; double c_b4 = 1.; double d__1; int pmax; double temp; boolean swap; double a, d, l, m, r, s, t, tsign, fa, ga, ha; double ft, gt, ht, mm; boolean gasmal; double tt, clt, crt, slt, srt; double ssmin,ssmax; ssmax = single_values[0]; ssmin = single_values[1]; clt = 0.0; crt = 0.0; slt = 0.0; srt = 0.0; tsign = 0.0; ft = f; fa = Math.abs(ft); ht = h; ha = Math.abs(h); pmax = 1; if( ha > fa) swap = true; else swap = false; if (swap) { pmax = 3; temp = ft; ft = ht; ht = temp; temp = fa; fa = ha; ha = temp; } gt = g; ga = Math.abs(gt); if (ga == 0.) { single_values[1] = ha; single_values[0] = fa; clt = 1.; crt = 1.; slt = 0.; srt = 0.; } else { gasmal = true; if (ga > fa) { pmax = 2; if (fa / ga < EPS) { gasmal = false; ssmax = ga; if (ha > 1.) { ssmin = fa / (ga / ha); } else { ssmin = fa / ga * ha; } clt = 1.; slt = ht / gt; srt = 1.; crt = ft / gt; } } if (gasmal) { d = fa - ha; if (d == fa) { l = 1.; } else { l = d / fa; } m = gt / ft; t = 2. - l; mm = m * m; tt = t * t; s = Math.sqrt(tt + mm); if (l == 0.) { r = Math.abs(m); } else { r = Math.sqrt(l * l + mm); } a = (s + r) * .5; if (ga > fa) { pmax = 2; if (fa / ga < EPS) { gasmal = false; ssmax = ga; if (ha > 1.) { ssmin = fa / (ga / ha); } else { ssmin = fa / ga * ha; } clt = 1.; slt = ht / gt; srt = 1.; crt = ft / gt; } } if (gasmal) { d = fa - ha; if (d == fa) { l = 1.; } else { l = d / fa; } m = gt / ft; t = 2. - l; mm = m * m; tt = t * t; s = Math.sqrt(tt + mm); if (l == 0.) { r = Math.abs(m); } else { r = Math.sqrt(l * l + mm); } a = (s + r) * .5; ssmin = ha / a; ssmax = fa * a; if (mm == 0.) { if (l == 0.) { t = d_sign(c_b3, ft) * d_sign(c_b4, gt); } else { t = gt / d_sign(d, ft) + m / t; } } else { t = (m / (s + t) + m / (r + l)) * (a + 1.); } l = Math.sqrt(t * t + 4.); crt = 2. / l; srt = t / l; clt = (crt + srt * m) / a; slt = ht / ft * srt / a; } } if (swap) { csl[0] = srt; snl[0] = crt; csr[0] = slt; snr[0] = clt; } else { csl[0] = clt; snl[0] = slt; csr[0] = crt; snr[0] = srt; } if (pmax == 1) { tsign = d_sign(c_b4, csr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, f); } if (pmax == 2) { tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, g); } if (pmax == 3) { tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, snl[0]) * d_sign(c_b4, h); } single_values[index] = d_sign(ssmax, tsign); d__1 = tsign * d_sign(c_b4, f) * d_sign(c_b4, h); single_values[index+1] = d_sign(ssmin, d__1); } return 0; } static double compute_rot( double f, double g, double[] sin, double[] cos, int index, int first) { int i__1; double d__1, d__2; double cs,sn; int i; double scale; int count; double f1, g1; double r; final double safmn2 = 2.002083095183101E-146; final double safmx2 = 4.994797680505588E+145; if (g == 0.) { cs = 1.; sn = 0.; r = f; } else if (f == 0.) { cs = 0.; sn = 1.; r = g; } else { f1 = f; g1 = g; scale = max(Math.abs(f1),Math.abs(g1)); if (scale >= safmx2) { count = 0; while(scale >= safmx2) { ++count; f1 *= safmn2; g1 *= safmn2; scale = max(Math.abs(f1),Math.abs(g1)); } r = Math.sqrt(f1*f1 + g1*g1); cs = f1 / r; sn = g1 / r; i__1 = count; for (i = 1; i <= count; ++i) { r *= safmx2; } } else if (scale <= safmn2) { count = 0; while(scale <= safmn2) { ++count; f1 *= safmx2; g1 *= safmx2; scale = max(Math.abs(f1),Math.abs(g1)); } r = Math.sqrt(f1*f1 + g1*g1); cs = f1 / r; sn = g1 / r; i__1 = count; for (i = 1; i <= count; ++i) { r *= safmn2; } } else { r = Math.sqrt(f1*f1 + g1*g1); cs = f1 / r; sn = g1 / r; } if (Math.abs(f) > Math.abs(g) && cs < 0.) { cs = -cs; sn = -sn; r = -r; } } sin[index] = sn; cos[index] = cs; return r; } static final private double max3( double[] values) { if( values[0] > values[1] ) { if( values[0] > values[2] ) return(values[0]); else return(values[2]); } else { if( values[1] > values[2] ) return(values[1]); else return(values[2]); } } final private void computeScales(boolean forceSVD) { if(scales == null) scales = new double[3]; if ((!forceSVD || ((dirtyBits & SVD_BIT) == 0)) && isAffine()) { if (isCongruent()) { if (((dirtyBits & RIGID_BIT) == 0) && ((type & RIGID) != 0)) { scales[0] = scales[1] = scales[2] = 1; dirtyBits &= ~SCALE_BIT; return; } scales[0] = scales[1] = scales[2] = Math.sqrt(mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]); dirtyBits &= ~SCALE_BIT; return; } if (isOrtho()) { scales[0] = Math.sqrt(mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]); scales[1] = Math.sqrt(mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]); scales[2] = Math.sqrt(mat[2]*mat[2] + mat[6]*mat[6] + mat[10]*mat[10]); dirtyBits &= ~SCALE_BIT; return; } } // fall back to use SVD decomposition if (rot == null) rot = new double[9]; compute_svd(this, scales, rot); dirtyBits &= ~ROTSCALESVD_DIRTY; } final private void computeScaleRotation(boolean forceSVD) { if(rot == null) rot = new double[9]; if(scales == null) scales = new double[3]; if ((!forceSVD || ((dirtyBits & SVD_BIT) == 0)) && isAffine()) { if (isCongruent()) { if (((dirtyBits & RIGID_BIT) == 0) && ((type & RIGID) != 0)) { rot[0] = mat[0]; rot[1] = mat[1]; rot[2] = mat[2]; rot[3] = mat[4]; rot[4] = mat[5]; rot[5] = mat[6]; rot[6] = mat[8]; rot[7] = mat[9]; rot[8] = mat[10]; scales[0] = scales[1] = scales[2] = 1; dirtyBits &= (~ROTATION_BIT | ~SCALE_BIT); return; } double s = Math.sqrt(mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]); if (s == 0) { compute_svd(this, scales, rot); return; } scales[0] = scales[1] = scales[2] = s; s = 1/s; rot[0] = mat[0]*s; rot[1] = mat[1]*s; rot[2] = mat[2]*s; rot[3] = mat[4]*s; rot[4] = mat[5]*s; rot[5] = mat[6]*s; rot[6] = mat[8]*s; rot[7] = mat[9]*s; rot[8] = mat[10]*s; dirtyBits &= (~ROTATION_BIT | ~SCALE_BIT); return; } if (isOrtho()) { double s; scales[0] = Math.sqrt(mat[0]*mat[0] + mat[4]*mat[4] + mat[8]*mat[8]); scales[1] = Math.sqrt(mat[1]*mat[1] + mat[5]*mat[5] + mat[9]*mat[9]); scales[2] = Math.sqrt(mat[2]*mat[2] + mat[6]*mat[6] + mat[10]*mat[10]); if ((scales[0] == 0) || (scales[1] == 0) || (scales[2] == 0)) { compute_svd(this, scales, rot); return; } s = 1/scales[0]; rot[0] = mat[0]*s; rot[3] = mat[4]*s; rot[6] = mat[8]*s; s = 1/scales[1]; rot[1] = mat[1]*s; rot[4] = mat[5]*s; rot[7] = mat[9]*s; s = 1/scales[2]; rot[2] = mat[2]*s; rot[5] = mat[6]*s; rot[8] = mat[10]*s; dirtyBits &= (~ROTATION_BIT | ~SCALE_BIT); return; } } // fall back to use SVD decomposition compute_svd(this, scales, rot); dirtyBits &= ~ROTSCALESVD_DIRTY; } final void getRotation(Transform3D t) { if ((dirtyBits & ROTATION_BIT)!= 0) { computeScaleRotation(false); } t.mat[3] = t.mat[7] = t.mat[11] = t.mat[12] = t.mat[13] = t.mat[14] = 0; t.mat[15] = 1; t.mat[0] = rot[0]; t.mat[1] = rot[1]; t.mat[2] = rot[2]; t.mat[4] = rot[3]; t.mat[5] = rot[4]; t.mat[6] = rot[5]; t.mat[8] = rot[6]; t.mat[9] = rot[7]; t.mat[10] = rot[8]; // Issue 253: set all dirty bits t.dirtyBits = ALL_DIRTY; } // somehow CanvasViewCache will directly modify mat[] // instead of calling ortho(). So we need to reset dirty bit final void setOrthoDirtyBit() { // Issue 253: set all dirty bits dirtyBits = ALL_DIRTY; type = 0; } // Fix for Issue 167 -- don't classify matrices with Infinity or NaN values // as affine private final boolean isInfOrNaN() { // The following is a faster version of the check. // Instead of 3 tests per array element (Double.isInfinite is 2 tests), // for a total of 48 tests, we will do 16 multiplies and 1 test. double d = 0.0; for (int i = 0; i < 16; i++) { d *= mat[i]; } return d != 0.0; } // Fix for Issue 253 // Methods to check input parameters for Infinity or NaN values private final boolean isInfOrNaN(Quat4f q) { return (Float.isNaN(q.x) || Float.isInfinite(q.x) || Float.isNaN(q.y) || Float.isInfinite(q.y) || Float.isNaN(q.z) || Float.isInfinite(q.z) || Float.isNaN(q.w) || Float.isInfinite(q.w)); } private boolean isInfOrNaN(Quat4d q) { return (Double.isNaN(q.x) || Double.isInfinite(q.x) || Double.isNaN(q.y) || Double.isInfinite(q.y) || Double.isNaN(q.z) || Double.isInfinite(q.z) || Double.isNaN(q.w) || Double.isInfinite(q.w)); } private boolean isInfOrNaN(AxisAngle4f a) { return (Float.isNaN(a.x) || Float.isInfinite(a.x) || Float.isNaN(a.y) || Float.isInfinite(a.y) || Float.isNaN(a.z) || Float.isInfinite(a.z) || Float.isNaN(a.angle) || Float.isInfinite(a.angle)); } private boolean isInfOrNaN(AxisAngle4d a) { return (Double.isNaN(a.x) || Double.isInfinite(a.x) || Double.isNaN(a.y) || Double.isInfinite(a.y) || Double.isNaN(a.z) || Double.isInfinite(a.z) || Double.isNaN(a.angle) || Double.isInfinite(a.angle)); } private boolean isInfOrNaN(double val) { return Double.isNaN(val) || Double.isInfinite(val); } private boolean isInfOrNaN(Vector3f v) { return (Float.isNaN(v.x) || Float.isInfinite(v.x) || Float.isNaN(v.y) || Float.isInfinite(v.y) || Float.isNaN(v.z) || Float.isInfinite(v.z)); } private boolean isInfOrNaN(Vector3d v) { return (Double.isNaN(v.x) || Double.isInfinite(v.x) || Double.isNaN(v.y) || Double.isInfinite(v.y) || Double.isNaN(v.z) || Double.isInfinite(v.z)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy