com.jme3.bounding.BoundingBox Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jme3-core Show documentation
Show all versions of jme3-core Show documentation
jMonkeyEngine is a 3D game engine for adventurous Java developers
The newest version!
/*
* Copyright (c) 2009-2013 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bounding;
import com.jme3.collision.Collidable;
import com.jme3.collision.CollisionResult;
import com.jme3.collision.CollisionResults;
import com.jme3.collision.UnsupportedCollisionException;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.*;
import com.jme3.scene.Mesh;
import com.jme3.scene.Spatial;
import com.jme3.util.TempVars;
import java.io.IOException;
import java.nio.FloatBuffer;
//import com.jme.scene.TriMesh;
/**
* BoundingBox
describes a bounding volume as an axis-aligned box.
*
* Instances may be initialized by invoking the containAABB
method.
*
* @author Joshua Slack
* @version $Id: BoundingBox.java,v 1.50 2007/09/22 16:46:35 irrisor Exp $
*/
public class BoundingBox extends BoundingVolume {
/**
* the X-extent of the box (>=0, may be +Infinity)
*/
float xExtent;
/**
* the Y-extent of the box (>=0, may be +Infinity)
*/
float yExtent;
/**
* the Z-extent of the box (>=0, may be +Infinity)
*/
float zExtent;
/**
* Instantiate a BoundingBox
without initializing it.
*/
public BoundingBox() {
}
/**
* Instantiate a BoundingBox
with given center and extents.
*
* @param c the coordinates of the center of the box (not null, not altered)
* @param x the X-extent of the box (>=0, may be +Infinity)
* @param y the Y-extent of the box (>=0, may be +Infinity)
* @param z the Z-extent of the box (>=0, may be +Infinity)
*/
public BoundingBox(Vector3f c, float x, float y, float z) {
this.center.set(c);
this.xExtent = x;
this.yExtent = y;
this.zExtent = z;
}
/**
* Instantiate a BoundingBox
equivalent to an existing box.
*
* @param source the existing box (not null, not altered)
*/
public BoundingBox(BoundingBox source) {
this.center.set(source.center);
this.xExtent = source.xExtent;
this.yExtent = source.yExtent;
this.zExtent = source.zExtent;
}
public BoundingBox(Vector3f min, Vector3f max) {
setMinMax(min, max);
}
public Type getType() {
return Type.AABB;
}
/**
* computeFromPoints
creates a new Bounding Box from a given
* set of points. It uses the containAABB
method as default.
*
* @param points
* the points to contain.
*/
public void computeFromPoints(FloatBuffer points) {
containAABB(points);
}
/**
* computeFromTris
creates a new Bounding Box from a given
* set of triangles. It is used in OBBTree calculations.
*
* @param tris
* @param start
* @param end
*/
public void computeFromTris(Triangle[] tris, int start, int end) {
if (end - start <= 0) {
return;
}
TempVars vars = TempVars.get();
Vector3f min = vars.vect1.set(new Vector3f(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY));
Vector3f max = vars.vect2.set(new Vector3f(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY));
Vector3f point;
for (int i = start; i < end; i++) {
point = tris[i].get(0);
checkMinMax(min, max, point);
point = tris[i].get(1);
checkMinMax(min, max, point);
point = tris[i].get(2);
checkMinMax(min, max, point);
}
center.set(min.addLocal(max));
center.multLocal(0.5f);
xExtent = max.x - center.x;
yExtent = max.y - center.y;
zExtent = max.z - center.z;
vars.release();
}
public void computeFromTris(int[] indices, Mesh mesh, int start, int end) {
if (end - start <= 0) {
return;
}
TempVars vars = TempVars.get();
Vector3f vect1 = vars.vect1;
Vector3f vect2 = vars.vect2;
Triangle triangle = vars.triangle;
Vector3f min = vect1.set(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY);
Vector3f max = vect2.set(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY);
Vector3f point;
for (int i = start; i < end; i++) {
mesh.getTriangle(indices[i], triangle);
point = triangle.get(0);
checkMinMax(min, max, point);
point = triangle.get(1);
checkMinMax(min, max, point);
point = triangle.get(2);
checkMinMax(min, max, point);
}
center.set(min.addLocal(max));
center.multLocal(0.5f);
xExtent = max.x - center.x;
yExtent = max.y - center.y;
zExtent = max.z - center.z;
vars.release();
}
public static void checkMinMax(Vector3f min, Vector3f max, Vector3f point) {
if (point.x < min.x) {
min.x = point.x;
}
if (point.x > max.x) {
max.x = point.x;
}
if (point.y < min.y) {
min.y = point.y;
}
if (point.y > max.y) {
max.y = point.y;
}
if (point.z < min.z) {
min.z = point.z;
}
if (point.z > max.z) {
max.z = point.z;
}
}
/**
* containAABB
creates a minimum-volume axis-aligned bounding
* box of the points, then selects the smallest enclosing sphere of the box
* with the sphere centered at the boxes center.
*
* @param points
* the list of points.
*/
public void containAABB(FloatBuffer points) {
if (points == null) {
return;
}
points.rewind();
if (points.remaining() <= 2) // we need at least a 3 float vector
{
return;
}
TempVars vars = TempVars.get();
float[] tmpArray = vars.skinPositions;
float minX = Float.POSITIVE_INFINITY, minY = Float.POSITIVE_INFINITY, minZ = Float.POSITIVE_INFINITY;
float maxX = Float.NEGATIVE_INFINITY, maxY = Float.NEGATIVE_INFINITY, maxZ = Float.NEGATIVE_INFINITY;
int iterations = (int) FastMath.ceil(points.limit() / ((float) tmpArray.length));
for (int i = iterations - 1; i >= 0; i--) {
int bufLength = Math.min(tmpArray.length, points.remaining());
points.get(tmpArray, 0, bufLength);
for (int j = 0; j < bufLength; j += 3) {
vars.vect1.x = tmpArray[j];
vars.vect1.y = tmpArray[j+1];
vars.vect1.z = tmpArray[j+2];
if (vars.vect1.x < minX) {
minX = vars.vect1.x;
}
if (vars.vect1.x > maxX) {
maxX = vars.vect1.x;
}
if (vars.vect1.y < minY) {
minY = vars.vect1.y;
}
if (vars.vect1.y > maxY) {
maxY = vars.vect1.y;
}
if (vars.vect1.z < minZ) {
minZ = vars.vect1.z;
}
if (vars.vect1.z > maxZ) {
maxZ = vars.vect1.z;
}
}
}
vars.release();
center.set(minX + maxX, minY + maxY, minZ + maxZ);
center.multLocal(0.5f);
xExtent = maxX - center.x;
yExtent = maxY - center.y;
zExtent = maxZ - center.z;
}
/**
* transform
modifies the center of the box to reflect the
* change made via a rotation, translation and scale.
*
* @param trans
* the transform to apply
* @param store
* box to store result in
*/
public BoundingVolume transform(Transform trans, BoundingVolume store) {
BoundingBox box;
if (store == null || store.getType() != Type.AABB) {
box = new BoundingBox();
} else {
box = (BoundingBox) store;
}
center.mult(trans.getScale(), box.center);
trans.getRotation().mult(box.center, box.center);
box.center.addLocal(trans.getTranslation());
TempVars vars = TempVars.get();
Matrix3f transMatrix = vars.tempMat3;
transMatrix.set(trans.getRotation());
// Make the rotation matrix all positive to get the maximum x/y/z extent
transMatrix.absoluteLocal();
Vector3f scale = trans.getScale();
vars.vect1.set(xExtent * FastMath.abs(scale.x), yExtent * FastMath.abs(scale.y), zExtent * FastMath.abs(scale.z));
transMatrix.mult(vars.vect1, vars.vect2);
// Assign the biggest rotations after scales.
box.xExtent = FastMath.abs(vars.vect2.getX());
box.yExtent = FastMath.abs(vars.vect2.getY());
box.zExtent = FastMath.abs(vars.vect2.getZ());
vars.release();
return box;
}
public BoundingVolume transform(Matrix4f trans, BoundingVolume store) {
BoundingBox box;
if (store == null || store.getType() != Type.AABB) {
box = new BoundingBox();
} else {
box = (BoundingBox) store;
}
TempVars vars = TempVars.get();
float w = trans.multProj(center, box.center);
box.center.divideLocal(w);
Matrix3f transMatrix = vars.tempMat3;
trans.toRotationMatrix(transMatrix);
// Make the rotation matrix all positive to get the maximum x/y/z extent
transMatrix.absoluteLocal();
vars.vect1.set(xExtent, yExtent, zExtent);
transMatrix.mult(vars.vect1, vars.vect1);
// Assign the biggest rotations after scales.
box.xExtent = FastMath.abs(vars.vect1.getX());
box.yExtent = FastMath.abs(vars.vect1.getY());
box.zExtent = FastMath.abs(vars.vect1.getZ());
vars.release();
return box;
}
/**
* whichSide
takes a plane (typically provided by a view
* frustum) to determine which side this bound is on.
*
* @param plane
* the plane to check against.
*/
public Plane.Side whichSide(Plane plane) {
float radius = FastMath.abs(xExtent * plane.getNormal().getX())
+ FastMath.abs(yExtent * plane.getNormal().getY())
+ FastMath.abs(zExtent * plane.getNormal().getZ());
float distance = plane.pseudoDistance(center);
//changed to < and > to prevent floating point precision problems
if (distance < -radius) {
return Plane.Side.Negative;
} else if (distance > radius) {
return Plane.Side.Positive;
} else {
return Plane.Side.None;
}
}
/**
* merge
combines this bounding box locally with a second
* bounding volume. The result contains both the original box and the second
* volume.
*
* @param volume the bounding volume to combine with this box (or null) (not
* altered)
* @return this box (with its components modified) or null if the second
* volume is of some type other than AABB or Sphere
*/
public BoundingVolume merge(BoundingVolume volume) {
return mergeLocal(volume);
}
/**
* mergeLocal
combines this bounding box locally with a second
* bounding volume. The result contains both the original box and the second
* volume.
*
* @param volume the bounding volume to combine with this box (or null) (not
* altered)
* @return this box (with its components modified) or null if the second
* volume is of some type other than AABB or Sphere
*/
public BoundingVolume mergeLocal(BoundingVolume volume) {
if (volume == null) {
return this;
}
switch (volume.getType()) {
case AABB:
BoundingBox vBox = (BoundingBox) volume;
return mergeLocal(vBox.center, vBox.xExtent, vBox.yExtent,
vBox.zExtent);
case Sphere:
BoundingSphere vSphere = (BoundingSphere) volume;
return mergeLocal(vSphere.center, vSphere.radius,
vSphere.radius, vSphere.radius);
// case OBB: {
// return mergeOBB((OrientedBoundingBox) volume);
// }
default:
return null;
}
}
/**
* Merges this AABB with the given OBB.
*
* @param volume
* the OBB to merge this AABB with.
* @return This AABB extended to fit the given OBB.
*/
// private BoundingBox mergeOBB(OrientedBoundingBox volume) {
// if (!volume.correctCorners)
// volume.computeCorners();
//
// TempVars vars = TempVars.get();
// Vector3f min = vars.compVect1.set(center.x - xExtent, center.y - yExtent,
// center.z - zExtent);
// Vector3f max = vars.compVect2.set(center.x + xExtent, center.y + yExtent,
// center.z + zExtent);
//
// for (int i = 1; i < volume.vectorStore.length; i++) {
// Vector3f temp = volume.vectorStore[i];
// if (temp.x < min.x)
// min.x = temp.x;
// else if (temp.x > max.x)
// max.x = temp.x;
//
// if (temp.y < min.y)
// min.y = temp.y;
// else if (temp.y > max.y)
// max.y = temp.y;
//
// if (temp.z < min.z)
// min.z = temp.z;
// else if (temp.z > max.z)
// max.z = temp.z;
// }
//
// center.set(min.addLocal(max));
// center.multLocal(0.5f);
//
// xExtent = max.x - center.x;
// yExtent = max.y - center.y;
// zExtent = max.z - center.z;
// return this;
// }
/**
* mergeLocal
combines this bounding box locally with a second
* bounding box described by its center and extents.
*
* @param c the center of the second box (not null, not altered)
* @param x the X-extent of the second box
* @param y the Y-extent of the second box
* @param z the Z-extent of the second box
* @return the resulting merged box.
*/
private BoundingBox mergeLocal(Vector3f c, float x, float y, float z) {
if (xExtent == Float.POSITIVE_INFINITY
|| x == Float.POSITIVE_INFINITY) {
center.x = 0;
xExtent = Float.POSITIVE_INFINITY;
} else {
float low = center.x - xExtent;
if (low > c.x - x) {
low = c.x - x;
}
float high = center.x + xExtent;
if (high < c.x + x) {
high = c.x + x;
}
center.x = (low + high) / 2;
xExtent = high - center.x;
}
if (yExtent == Float.POSITIVE_INFINITY
|| y == Float.POSITIVE_INFINITY) {
center.y = 0;
yExtent = Float.POSITIVE_INFINITY;
} else {
float low = center.y - yExtent;
if (low > c.y - y) {
low = c.y - y;
}
float high = center.y + yExtent;
if (high < c.y + y) {
high = c.y + y;
}
center.y = (low + high) / 2;
yExtent = high - center.y;
}
if (zExtent == Float.POSITIVE_INFINITY
|| z == Float.POSITIVE_INFINITY) {
center.z = 0;
zExtent = Float.POSITIVE_INFINITY;
} else {
float low = center.z - zExtent;
if (low > c.z - z) {
low = c.z - z;
}
float high = center.z + zExtent;
if (high < c.z + z) {
high = c.z + z;
}
center.z = (low + high) / 2;
zExtent = high - center.z;
}
return this;
}
/**
* clone
creates a new BoundingBox object containing the same
* data as this one.
*
* @param store
* where to store the cloned information. if null or wrong class,
* a new store is created.
* @return the new BoundingBox
*/
public BoundingVolume clone(BoundingVolume store) {
if (store != null && store.getType() == Type.AABB) {
BoundingBox rVal = (BoundingBox) store;
rVal.center.set(center);
rVal.xExtent = xExtent;
rVal.yExtent = yExtent;
rVal.zExtent = zExtent;
rVal.checkPlane = checkPlane;
return rVal;
}
BoundingBox rVal = new BoundingBox(center.clone(),
xExtent, yExtent, zExtent);
return rVal;
}
/**
* toString
returns the string representation of this object.
* The form is: "[Center: xExtent: X.XX yExtent: Y.YY zExtent:
* Z.ZZ]".
*
* @return the string representation of this.
*/
@Override
public String toString() {
return getClass().getSimpleName() + " [Center: " + center + " xExtent: "
+ xExtent + " yExtent: " + yExtent + " zExtent: " + zExtent
+ "]";
}
/**
* intersects determines if this Bounding Box intersects with another given
* bounding volume. If so, true is returned, otherwise, false is returned.
*
* @see BoundingVolume#intersects(com.jme3.bounding.BoundingVolume)
*/
public boolean intersects(BoundingVolume bv) {
return bv.intersectsBoundingBox(this);
}
/**
* determines if this bounding box intersects a given bounding sphere.
*
* @see BoundingVolume#intersectsSphere(com.jme3.bounding.BoundingSphere)
*/
public boolean intersectsSphere(BoundingSphere bs) {
return bs.intersectsBoundingBox(this);
}
/**
* determines if this bounding box intersects a given bounding box. If the
* two boxes intersect in any way, true is returned. Otherwise, false is
* returned.
*
* @see BoundingVolume#intersectsBoundingBox(com.jme3.bounding.BoundingBox)
*/
public boolean intersectsBoundingBox(BoundingBox bb) {
assert Vector3f.isValidVector(center) && Vector3f.isValidVector(bb.center);
if (center.x + xExtent < bb.center.x - bb.xExtent
|| center.x - xExtent > bb.center.x + bb.xExtent) {
return false;
} else if (center.y + yExtent < bb.center.y - bb.yExtent
|| center.y - yExtent > bb.center.y + bb.yExtent) {
return false;
} else if (center.z + zExtent < bb.center.z - bb.zExtent
|| center.z - zExtent > bb.center.z + bb.zExtent) {
return false;
} else {
return true;
}
}
/**
* determines if this bounding box intersects with a given oriented bounding
* box.
*
* @see com.jme.bounding.BoundingVolume#intersectsOrientedBoundingBox(com.jme.bounding.OrientedBoundingBox)
*/
// public boolean intersectsOrientedBoundingBox(OrientedBoundingBox obb) {
// return obb.intersectsBoundingBox(this);
// }
/**
* determines if this bounding box intersects with a given ray object. If an
* intersection has occurred, true is returned, otherwise false is returned.
*
* @see BoundingVolume#intersects(com.jme3.math.Ray)
*/
public boolean intersects(Ray ray) {
assert Vector3f.isValidVector(center);
float rhs;
TempVars vars = TempVars.get();
Vector3f diff = ray.origin.subtract(getCenter(vars.vect2), vars.vect1);
final float[] fWdU = vars.fWdU;
final float[] fAWdU = vars.fAWdU;
final float[] fDdU = vars.fDdU;
final float[] fADdU = vars.fADdU;
final float[] fAWxDdU = vars.fAWxDdU;
fWdU[0] = ray.getDirection().dot(Vector3f.UNIT_X);
fAWdU[0] = FastMath.abs(fWdU[0]);
fDdU[0] = diff.dot(Vector3f.UNIT_X);
fADdU[0] = FastMath.abs(fDdU[0]);
if (fADdU[0] > xExtent && fDdU[0] * fWdU[0] >= 0.0) {
vars.release();
return false;
}
fWdU[1] = ray.getDirection().dot(Vector3f.UNIT_Y);
fAWdU[1] = FastMath.abs(fWdU[1]);
fDdU[1] = diff.dot(Vector3f.UNIT_Y);
fADdU[1] = FastMath.abs(fDdU[1]);
if (fADdU[1] > yExtent && fDdU[1] * fWdU[1] >= 0.0) {
vars.release();
return false;
}
fWdU[2] = ray.getDirection().dot(Vector3f.UNIT_Z);
fAWdU[2] = FastMath.abs(fWdU[2]);
fDdU[2] = diff.dot(Vector3f.UNIT_Z);
fADdU[2] = FastMath.abs(fDdU[2]);
if (fADdU[2] > zExtent && fDdU[2] * fWdU[2] >= 0.0) {
vars.release();
return false;
}
Vector3f wCrossD = ray.getDirection().cross(diff, vars.vect2);
fAWxDdU[0] = FastMath.abs(wCrossD.dot(Vector3f.UNIT_X));
rhs = yExtent * fAWdU[2] + zExtent * fAWdU[1];
if (fAWxDdU[0] > rhs) {
vars.release();
return false;
}
fAWxDdU[1] = FastMath.abs(wCrossD.dot(Vector3f.UNIT_Y));
rhs = xExtent * fAWdU[2] + zExtent * fAWdU[0];
if (fAWxDdU[1] > rhs) {
vars.release();
return false;
}
fAWxDdU[2] = FastMath.abs(wCrossD.dot(Vector3f.UNIT_Z));
rhs = xExtent * fAWdU[1] + yExtent * fAWdU[0];
if (fAWxDdU[2] > rhs) {
vars.release();
return false;
}
vars.release();
return true;
}
/**
* @see com.jme.bounding.BoundingVolume#intersectsWhere(com.jme.math.Ray)
*/
private int collideWithRay(Ray ray, CollisionResults results) {
TempVars vars = TempVars.get();
try {
Vector3f diff = vars.vect1.set(ray.origin).subtractLocal(center);
Vector3f direction = vars.vect2.set(ray.direction);
//float[] t = {0f, Float.POSITIVE_INFINITY};
float[] t = vars.fWdU; // use one of the tempvars arrays
t[0] = 0;
t[1] = Float.POSITIVE_INFINITY;
float saveT0 = t[0], saveT1 = t[1];
boolean notEntirelyClipped = clip(+direction.x, -diff.x - xExtent, t)
&& clip(-direction.x, +diff.x - xExtent, t)
&& clip(+direction.y, -diff.y - yExtent, t)
&& clip(-direction.y, +diff.y - yExtent, t)
&& clip(+direction.z, -diff.z - zExtent, t)
&& clip(-direction.z, +diff.z - zExtent, t);
if (notEntirelyClipped && (t[0] != saveT0 || t[1] != saveT1)) {
if (t[1] > t[0]) {
float[] distances = t;
Vector3f point0 = new Vector3f(ray.direction).multLocal(distances[0]).addLocal(ray.origin);
Vector3f point1 = new Vector3f(ray.direction).multLocal(distances[1]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point0, distances[0]);
results.addCollision(result);
result = new CollisionResult(point1, distances[1]);
results.addCollision(result);
return 2;
}
Vector3f point = new Vector3f(ray.direction).multLocal(t[0]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point, t[0]);
results.addCollision(result);
return 1;
}
return 0;
} finally {
vars.release();
}
}
private int collideWithRay(Ray ray) {
TempVars vars = TempVars.get();
try {
Vector3f diff = vars.vect1.set(ray.origin).subtractLocal(center);
Vector3f direction = vars.vect2.set(ray.direction);
//float[] t = {0f, Float.POSITIVE_INFINITY};
float[] t = vars.fWdU; // use one of the tempvars arrays
t[0] = 0;
t[1] = Float.POSITIVE_INFINITY;
float saveT0 = t[0], saveT1 = t[1];
boolean notEntirelyClipped = clip(+direction.x, -diff.x - xExtent, t)
&& clip(-direction.x, +diff.x - xExtent, t)
&& clip(+direction.y, -diff.y - yExtent, t)
&& clip(-direction.y, +diff.y - yExtent, t)
&& clip(+direction.z, -diff.z - zExtent, t)
&& clip(-direction.z, +diff.z - zExtent, t);
if (notEntirelyClipped && (t[0] != saveT0 || t[1] != saveT1)) {
if (t[1] > t[0]) return 2;
else return 1;
}
return 0;
} finally {
vars.release();
}
}
@Override
public int collideWith(Collidable other, CollisionResults results) {
if (other instanceof Ray) {
Ray ray = (Ray) other;
return collideWithRay(ray, results);
} else if (other instanceof Triangle) {
Triangle t = (Triangle) other;
if (intersects(t.get1(), t.get2(), t.get3())) {
CollisionResult r = new CollisionResult();
results.addCollision(r);
return 1;
}
return 0;
} else if (other instanceof BoundingVolume) {
if (intersects((BoundingVolume) other)) {
CollisionResult r = new CollisionResult();
results.addCollision(r);
return 1;
}
return 0;
} else if (other instanceof Spatial) {
return ((Spatial)other).collideWith(this, results);
} else {
throw new UnsupportedCollisionException("With: " + other.getClass().getSimpleName());
}
}
@Override
public int collideWith(Collidable other) {
if (other instanceof Ray) {
Ray ray = (Ray) other;
return collideWithRay(ray);
} else if (other instanceof Triangle) {
Triangle t = (Triangle) other;
if (intersects(t.get1(), t.get2(), t.get3())) {
return 1;
}
return 0;
} else if (other instanceof BoundingVolume) {
return intersects((BoundingVolume) other) ? 1 : 0;
} else {
throw new UnsupportedCollisionException("With: " + other.getClass().getSimpleName());
}
}
/**
* C code ported from
* http://www.cs.lth.se/home/Tomas_Akenine_Moller/code/tribox3.txt
*
* @param v1 The first point in the triangle
* @param v2 The second point in the triangle
* @param v3 The third point in the triangle
* @return True if the bounding box intersects the triangle, false
* otherwise.
*/
public boolean intersects(Vector3f v1, Vector3f v2, Vector3f v3) {
return Intersection.intersect(this, v1, v2, v3);
}
@Override
public boolean contains(Vector3f point) {
return FastMath.abs(center.x - point.x) < xExtent
&& FastMath.abs(center.y - point.y) < yExtent
&& FastMath.abs(center.z - point.z) < zExtent;
}
@Override
public boolean intersects(Vector3f point) {
return FastMath.abs(center.x - point.x) <= xExtent
&& FastMath.abs(center.y - point.y) <= yExtent
&& FastMath.abs(center.z - point.z) <= zExtent;
}
public float distanceToEdge(Vector3f point) {
// compute coordinates of point in box coordinate system
TempVars vars= TempVars.get();
Vector3f closest = vars.vect1;
point.subtract(center,closest);
// project test point onto box
float sqrDistance = 0.0f;
float delta;
if (closest.x < -xExtent) {
delta = closest.x + xExtent;
sqrDistance += delta * delta;
closest.x = -xExtent;
} else if (closest.x > xExtent) {
delta = closest.x - xExtent;
sqrDistance += delta * delta;
closest.x = xExtent;
}
if (closest.y < -yExtent) {
delta = closest.y + yExtent;
sqrDistance += delta * delta;
closest.y = -yExtent;
} else if (closest.y > yExtent) {
delta = closest.y - yExtent;
sqrDistance += delta * delta;
closest.y = yExtent;
}
if (closest.z < -zExtent) {
delta = closest.z + zExtent;
sqrDistance += delta * delta;
closest.z = -zExtent;
} else if (closest.z > zExtent) {
delta = closest.z - zExtent;
sqrDistance += delta * delta;
closest.z = zExtent;
}
vars.release();
return FastMath.sqrt(sqrDistance);
}
/**
* clip
determines if a line segment intersects the current
* test plane.
*
* @param denom
* the denominator of the line segment.
* @param numer
* the numerator of the line segment.
* @param t
* test values of the plane.
* @return true if the line segment intersects the plane, false otherwise.
*/
private boolean clip(float denom, float numer, float[] t) {
// Return value is 'true' if line segment intersects the current test
// plane. Otherwise 'false' is returned in which case the line segment
// is entirely clipped.
if (denom > 0.0f) {
// This is the old if statement...
// if (numer > denom * t[1]) {
//
// The problem is that what is actually stored is
// numer/denom. In non-floating point, this math should
// work out the same but in floating point there can
// be subtle math errors. The multiply will exaggerate
// errors that may have been introduced when the value
// was originally divided.
//
// This is especially true when the bounding box has zero
// extents in some plane because the error rate is critical.
// comparing a to b * c is not the same as comparing a/b to c
// in this case. In fact, I tried converting this method to
// double and the and the error was in the last decimal place.
//
// So, instead, we now compare the divided version to the divided
// version. We lose some slight performance here as divide
// will be more expensive than the divide. Some microbenchmarks
// show divide to be 3x slower than multiple on Java 1.6.
// BUT... we also saved a multiply in the non-clipped case because
// we can reuse the divided version in both if checks.
// I think it's better to be right in this case.
//
// Bug that I'm fixing: rays going right through quads at certain
// angles and distances because they fail the bounding box test.
// Many Bothans died bring you this fix.
// -pspeed
float newT = numer / denom;
if (newT > t[1]) {
return false;
}
if (newT > t[0]) {
t[0] = newT;
}
return true;
} else if (denom < 0.0f) {
// Old if statement... see above
// if (numer > denom * t[0]) {
//
// Note though that denom is always negative in this block.
// When we move it over to the other side we have to flip
// the comparison. Algebra for the win.
float newT = numer / denom;
if (newT < t[0]) {
return false;
}
if (newT < t[1]) {
t[1] = newT;
}
return true;
} else {
return numer <= 0.0;
}
}
/**
* Query extent.
*
* @param store
* where extent gets stored - null to return a new vector
* @return store / new vector
*/
public Vector3f getExtent(Vector3f store) {
if (store == null) {
store = new Vector3f();
}
store.set(xExtent, yExtent, zExtent);
return store;
}
public float getXExtent() {
return xExtent;
}
public float getYExtent() {
return yExtent;
}
public float getZExtent() {
return zExtent;
}
public void setXExtent(float xExtent) {
if (xExtent < 0) {
throw new IllegalArgumentException();
}
this.xExtent = xExtent;
}
public void setYExtent(float yExtent) {
if (yExtent < 0) {
throw new IllegalArgumentException();
}
this.yExtent = yExtent;
}
public void setZExtent(float zExtent) {
if (zExtent < 0) {
throw new IllegalArgumentException();
}
this.zExtent = zExtent;
}
public Vector3f getMin(Vector3f store) {
if (store == null) {
store = new Vector3f();
}
store.set(center).subtractLocal(xExtent, yExtent, zExtent);
return store;
}
public Vector3f getMax(Vector3f store) {
if (store == null) {
store = new Vector3f();
}
store.set(center).addLocal(xExtent, yExtent, zExtent);
return store;
}
public void setMinMax(Vector3f min, Vector3f max) {
this.center.set(max).addLocal(min).multLocal(0.5f);
xExtent = FastMath.abs(max.x - center.x);
yExtent = FastMath.abs(max.y - center.y);
zExtent = FastMath.abs(max.z - center.z);
}
@Override
public void write(JmeExporter e) throws IOException {
super.write(e);
OutputCapsule capsule = e.getCapsule(this);
capsule.write(xExtent, "xExtent", 0);
capsule.write(yExtent, "yExtent", 0);
capsule.write(zExtent, "zExtent", 0);
}
@Override
public void read(JmeImporter e) throws IOException {
super.read(e);
InputCapsule capsule = e.getCapsule(this);
xExtent = capsule.readFloat("xExtent", 0);
yExtent = capsule.readFloat("yExtent", 0);
zExtent = capsule.readFloat("zExtent", 0);
}
@Override
public float getVolume() {
return (8 * xExtent * yExtent * zExtent);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy