com.jme3.light.SpotLight Maven / Gradle / Ivy
Show all versions of jme3-core Show documentation
/*
* Copyright (c) 2009-2012, 2015-2016 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.light;
import com.jme3.bounding.BoundingBox;
import com.jme3.bounding.BoundingSphere;
import com.jme3.bounding.BoundingVolume;
import com.jme3.bounding.Intersection;
import com.jme3.export.*;
import com.jme3.math.ColorRGBA;
import com.jme3.math.FastMath;
import com.jme3.math.Plane;
import com.jme3.math.Vector3f;
import com.jme3.renderer.Camera;
import com.jme3.scene.Spatial;
import com.jme3.util.TempVars;
import java.io.IOException;
/**
* Represents a spot light.
* A spot light emits a cone of light from a position and in a direction.
* It can be used to fake torch lights or cars' lights.
*
* In addition to a position and a direction, spot lights also have a range which
* can be used to attenuate the influence of the light depending on the
* distance between the light and the affected object.
* Also the angle of the cone can be tweaked by changing the spot inner angle and the spot outer angle.
* the spot inner angle determines the cone of light where light has full influence.
* the spot outer angle determines the cone global cone of light of the spot light.
* the light intensity slowly decreases between the inner cone and the outer cone.
* @author Nehon
*/
public class SpotLight extends Light {
protected Vector3f position = new Vector3f();
protected Vector3f direction = new Vector3f(0, -1, 0);
protected float spotInnerAngle = FastMath.QUARTER_PI / 8;
protected float spotOuterAngle = FastMath.QUARTER_PI / 6;
protected float spotRange = 100;
protected float invSpotRange = 1f / 100;
protected float packedAngleCos = 0;
protected float outerAngleCosSqr, outerAngleSinSqr;
protected float outerAngleSinRcp, outerAngleSin, outerAngleCos;
/**
* Creates a SpotLight.
*/
public SpotLight() {
super();
computeAngleParameters();
}
/**
* Creates a SpotLight at the given position and with the given direction.
* @param position the position in world space.
* @param direction the direction of the light.
*/
public SpotLight(Vector3f position, Vector3f direction) {
this();
setPosition(position);
setDirection(direction);
}
/**
* Creates a SpotLight at the given position, with the given direction, and the
* given range.
* @param position the position in world space.
* @param direction the direction of the light.
* @param range the spot light range
*/
public SpotLight(Vector3f position, Vector3f direction, float range) {
this();
setPosition(position);
setDirection(direction);
setSpotRange(range);
}
/**
* Creates a SpotLight at the given position, with the given direction and
* the given color.
* @param position the position in world space.
* @param direction the direction of the light.
* @param color the light's color.
*/
public SpotLight(Vector3f position, Vector3f direction, ColorRGBA color) {
super(color);
computeAngleParameters();
setPosition(position);
setDirection(direction);
}
/**
* Creates a SpotLight at the given position, with the given direction,
* the given range and the given color.
* @param position the position in world space.
* @param direction the direction of the light.
* @param range the spot light range
* @param color the light's color.
*/
public SpotLight(Vector3f position, Vector3f direction, float range, ColorRGBA color) {
super(color);
computeAngleParameters();
setPosition(position);
setDirection(direction);
setSpotRange(range);
}
/**
* Creates a SpotLight at the given position, with the given direction,
* the given color and the given inner and outer angles
* (controls the falloff of the light)
*
* @param position the position in world space.
* @param direction the direction of the light.
* @param range the spot light range
* @param color the light's color.
* @param innerAngle the inner angle of the spot light.
* @param outerAngle the outer angle of the spot light.
*
* @see SpotLight#setSpotInnerAngle(float)
* @see SpotLight#setSpotOuterAngle(float)
*/
public SpotLight(Vector3f position, Vector3f direction, float range, ColorRGBA color, float innerAngle, float outerAngle) {
super(color);
this.spotInnerAngle = innerAngle;
this.spotOuterAngle = outerAngle;
computeAngleParameters();
setPosition(position);
setDirection(direction);
setSpotRange(range);
}
private void computeAngleParameters() {
float innerCos = FastMath.cos(spotInnerAngle);
outerAngleCos = FastMath.cos(spotOuterAngle);
packedAngleCos = (int) (innerCos * 1000);
//due to approximations, very close angles can give the same cos
//here we make sure outer cos is bellow inner cos.
if (((int) packedAngleCos) == ((int) (outerAngleCos * 1000))) {
outerAngleCos -= 0.001f;
}
packedAngleCos += outerAngleCos;
if (packedAngleCos == 0.0f) {
throw new IllegalArgumentException("Packed angle cosine is invalid");
}
// compute parameters needed for cone vs sphere check.
outerAngleSin = FastMath.sin(spotOuterAngle);
outerAngleCosSqr = outerAngleCos * outerAngleCos;
outerAngleSinSqr = outerAngleSin * outerAngleSin;
outerAngleSinRcp = 1.0f / outerAngleSin;
}
@Override
public boolean intersectsBox(BoundingBox box, TempVars vars) {
if (this.spotRange > 0f) {
// Check spot range first.
// Sphere v. box collision
if (!Intersection.intersect(box, position, spotRange)) {
return false;
}
}
Vector3f otherCenter = box.getCenter();
Vector3f radVect = vars.vect4;
radVect.set(box.getXExtent(), box.getYExtent(), box.getZExtent());
float otherRadiusSquared = radVect.lengthSquared();
float otherRadius = FastMath.sqrt(otherRadiusSquared);
// Check if sphere is within spot angle.
// Cone v. sphere collision.
Vector3f E = direction.mult(otherRadius * outerAngleSinRcp, vars.vect1);
Vector3f U = position.subtract(E, vars.vect2);
Vector3f D = otherCenter.subtract(U, vars.vect3);
float dsqr = D.dot(D);
float e = direction.dot(D);
if (e > 0f && e * e >= dsqr * outerAngleCosSqr) {
D = otherCenter.subtract(position, vars.vect3);
dsqr = D.dot(D);
e = -direction.dot(D);
if (e > 0f && e * e >= dsqr * outerAngleSinSqr) {
return dsqr <= otherRadiusSquared;
} else {
return true;
}
}
return false;
}
@Override
public boolean intersectsSphere(BoundingSphere sphere, TempVars vars) {
if (this.spotRange > 0f) {
// Check spot range first.
// Sphere v. sphere collision
if (!Intersection.intersect(sphere, position, spotRange)) {
return false;
}
}
float otherRadiusSquared = FastMath.sqr(sphere.getRadius());
float otherRadius = sphere.getRadius();
// Check if sphere is within spot angle.
// Cone v. sphere collision.
Vector3f E = direction.mult(otherRadius * outerAngleSinRcp, vars.vect1);
Vector3f U = position.subtract(E, vars.vect2);
Vector3f D = sphere.getCenter().subtract(U, vars.vect3);
float dsqr = D.dot(D);
float e = direction.dot(D);
if (e > 0f && e * e >= dsqr * outerAngleCosSqr) {
D = sphere.getCenter().subtract(position, vars.vect3);
dsqr = D.dot(D);
e = -direction.dot(D);
if (e > 0f && e * e >= dsqr * outerAngleSinSqr) {
return dsqr <= otherRadiusSquared;
} else {
return true;
}
}
return false;
}
@Override
public boolean intersectsFrustum(Camera cam, TempVars vars) {
if (spotRange == 0) {
// The algorithm below does not support infinite spot range.
return true;
}
Vector3f farPoint = vars.vect1.set(position).addLocal(vars.vect2.set(direction).multLocal(spotRange));
for (int i = 5; i >= 0; i--) {
//check origin against the plane
Plane plane = cam.getWorldPlane(i);
float dot = plane.pseudoDistance(position);
if(dot < 0){
// outside, check the far point against the plane
dot = plane.pseudoDistance(farPoint);
if(dot < 0){
// outside, check the projection of the far point along the normal of the plane to the base disc perimeter of the cone
//computing the radius of the base disc
float farRadius = (spotRange / outerAngleCos) * outerAngleSin;
//computing the projection direction : perpendicular to the light direction and coplanar with the direction vector and the normal vector
Vector3f perpDirection = vars.vect2.set(direction).crossLocal(plane.getNormal()).normalizeLocal().crossLocal(direction);
//projecting the far point on the base disc perimeter
Vector3f projectedPoint = vars.vect3.set(farPoint).addLocal(perpDirection.multLocal(farRadius));
//checking against the plane
dot = plane.pseudoDistance(projectedPoint);
if(dot < 0){
// Outside, the light can be culled
return false;
}
}
}
}
return true;
}
@Override
protected void computeLastDistance(Spatial owner) {
if (owner.getWorldBound() != null) {
BoundingVolume bv = owner.getWorldBound();
lastDistance = bv.distanceSquaredTo(position);
} else {
lastDistance = owner.getWorldTranslation().distanceSquared(position);
}
}
@Override
public Type getType() {
return Type.Spot;
}
public Vector3f getDirection() {
return direction;
}
public final void setDirection(Vector3f direction) {
this.direction.set(direction);
}
public Vector3f getPosition() {
return position;
}
public final void setPosition(Vector3f position) {
this.position.set(position);
}
public float getSpotRange() {
return spotRange;
}
/**
* Set the range of the light influence.
*
* Setting a non-zero range indicates the light should use attenuation.
* If a pixel's distance to this light's position
* is greater than the light's range, then the pixel will not be
* effected by this light, if the distance is less than the range, then
* the magnitude of the influence is equal to distance / range.
*
* @param spotRange the range of the light influence.
*
* @throws IllegalArgumentException If spotRange is negative
*/
public void setSpotRange(float spotRange) {
if (spotRange < 0) {
throw new IllegalArgumentException("SpotLight range cannot be negative");
}
this.spotRange = spotRange;
if (spotRange != 0f) {
this.invSpotRange = 1f / spotRange;
} else {
this.invSpotRange = 0;
}
}
/**
* for internal use only
* @return the inverse of the spot range
*/
public float getInvSpotRange() {
return invSpotRange;
}
/**
* returns the spot inner angle
* @return the spot inner angle
*/
public float getSpotInnerAngle() {
return spotInnerAngle;
}
/**
* Sets the inner angle of the cone of influence.
*
* Must be between 0 and pi/2.
*
* This angle is the angle between the spot direction axis and the inner border of the cone of influence.
* @param spotInnerAngle
*/
public void setSpotInnerAngle(float spotInnerAngle) {
if (spotInnerAngle < 0f || spotInnerAngle >= FastMath.HALF_PI) {
throw new IllegalArgumentException("spot angle must be between 0 and pi/2");
}
this.spotInnerAngle = spotInnerAngle;
computeAngleParameters();
}
/**
* returns the spot outer angle
* @return the spot outer angle
*/
public float getSpotOuterAngle() {
return spotOuterAngle;
}
/**
* Sets the outer angle of the cone of influence.
*
* Must be between 0 and pi/2.
*
* This angle is the angle between the spot direction axis and the outer border of the cone of influence.
* this should be greater than the inner angle or the result will be unexpected.
* @param spotOuterAngle
*/
public void setSpotOuterAngle(float spotOuterAngle) {
if (spotOuterAngle < 0f || spotOuterAngle >= FastMath.HALF_PI) {
throw new IllegalArgumentException("spot angle must be between 0 and pi/2");
}
this.spotOuterAngle = spotOuterAngle;
computeAngleParameters();
}
/**
* for internal use only
* @return the cosines of the inner and outter angle packed in a float
*/
public float getPackedAngleCos() {
return packedAngleCos;
}
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = ex.getCapsule(this);
oc.write(direction, "direction", new Vector3f());
oc.write(position, "position", new Vector3f());
oc.write(spotInnerAngle, "spotInnerAngle", FastMath.QUARTER_PI / 8);
oc.write(spotOuterAngle, "spotOuterAngle", FastMath.QUARTER_PI / 6);
oc.write(spotRange, "spotRange", 100);
}
@Override
public void read(JmeImporter im) throws IOException {
super.read(im);
InputCapsule ic = im.getCapsule(this);
spotInnerAngle = ic.readFloat("spotInnerAngle", FastMath.QUARTER_PI / 8);
spotOuterAngle = ic.readFloat("spotOuterAngle", FastMath.QUARTER_PI / 6);
computeAngleParameters();
direction = (Vector3f) ic.readSavable("direction", new Vector3f());
position = (Vector3f) ic.readSavable("position", new Vector3f());
spotRange = ic.readFloat("spotRange", 100);
if (spotRange != 0) {
this.invSpotRange = 1 / spotRange;
} else {
this.invSpotRange = 0;
}
}
@Override
public SpotLight clone() {
SpotLight s = (SpotLight)super.clone();
s.direction = direction.clone();
s.position = position.clone();
return s;
}
}