All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algs4.BellmanFordSP Maven / Gradle / Ivy

The newest version!
/******************************************************************************
 *  Compilation:  javac BellmanFordSP.java
 *  Execution:    java BellmanFordSP filename.txt s
 *  Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Queue.java
 *                EdgeWeightedDirectedCycle.java
 *  Data files:   https://algs4.cs.princeton.edu/44sp/tinyEWDn.txt
 *                https://algs4.cs.princeton.edu/44sp/mediumEWDnc.txt
 *
 *  Bellman-Ford shortest path algorithm. Computes the shortest path tree in
 *  edge-weighted digraph G from vertex s, or finds a negative cost cycle
 *  reachable from s.
 *
 *  % java BellmanFordSP tinyEWDn.txt 0
 *  0 to 0 ( 0.00)  
 *  0 to 1 ( 0.93)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35   5->1  0.32
 *  0 to 2 ( 0.26)  0->2  0.26   
 *  0 to 3 ( 0.99)  0->2  0.26   2->7  0.34   7->3  0.39   
 *  0 to 4 ( 0.26)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   
 *  0 to 5 ( 0.61)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35
 *  0 to 6 ( 1.51)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   
 *  0 to 7 ( 0.60)  0->2  0.26   2->7  0.34   
 *
 *  % java BellmanFordSP tinyEWDnc.txt 0
 *  4->5  0.35
 *  5->4 -0.66
 *
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code BellmanFordSP} class represents a data type for solving the
 *  single-source shortest paths problem in edge-weighted digraphs with
 *  no negative cycles. 
 *  The edge weights can be positive, negative, or zero.
 *  This class finds either a shortest path from the source vertex s
 *  to every other vertex or a negative cycle reachable from the source vertex.
 *  

* This implementation uses the Bellman-Ford-Moore algorithm. * The constructor takes time proportional to V (V + E) * in the worst case, where V is the number of vertices and E * is the number of edges. * Each call to {@code distTo(int)} and {@code hasPathTo(int)}, * {@code hasNegativeCycle} takes constant time; * each call to {@code pathTo(int)} and {@code negativeCycle()} * takes time proportional to length of the path returned. *

* For additional documentation, * see Section 4.4 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class BellmanFordSP { private double[] distTo; // distTo[v] = distance of shortest s->v path private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private boolean[] onQueue; // onQueue[v] = is v currently on the queue? private Queue queue; // queue of vertices to relax private int cost; // number of calls to relax() private Iterable cycle; // negative cycle (or null if no such cycle) /** * Computes a shortest paths tree from {@code s} to every other vertex in * the edge-weighted digraph {@code G}. * @param G the acyclic digraph * @param s the source vertex * @throws IllegalArgumentException unless {@code 0 <= s < V} */ public BellmanFordSP(EdgeWeightedDigraph G, int s) { distTo = new double[G.V()]; edgeTo = new DirectedEdge[G.V()]; onQueue = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; // Bellman-Ford algorithm queue = new Queue(); queue.enqueue(s); onQueue[s] = true; while (!queue.isEmpty() && !hasNegativeCycle()) { int v = queue.dequeue(); onQueue[v] = false; relax(G, v); } assert check(G, s); } // relax vertex v and put other endpoints on queue if changed private void relax(EdgeWeightedDigraph G, int v) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight(); edgeTo[w] = e; if (!onQueue[w]) { queue.enqueue(w); onQueue[w] = true; } } if (cost++ % G.V() == 0) { findNegativeCycle(); if (hasNegativeCycle()) return; // found a negative cycle } } } /** * Is there a negative cycle reachable from the source vertex {@code s}? * @return {@code true} if there is a negative cycle reachable from the * source vertex {@code s}, and {@code false} otherwise */ public boolean hasNegativeCycle() { return cycle != null; } /** * Returns a negative cycle reachable from the source vertex {@code s}, or {@code null} * if there is no such cycle. * @return a negative cycle reachable from the soruce vertex {@code s} * as an iterable of edges, and {@code null} if there is no such cycle */ public Iterable negativeCycle() { return cycle; } // by finding a cycle in predecessor graph private void findNegativeCycle() { int V = edgeTo.length; EdgeWeightedDigraph spt = new EdgeWeightedDigraph(V); for (int v = 0; v < V; v++) if (edgeTo[v] != null) spt.addEdge(edgeTo[v]); EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt); cycle = finder.cycle(); } /** * Returns the length of a shortest path from the source vertex {@code s} to vertex {@code v}. * @param v the destination vertex * @return the length of a shortest path from the source vertex {@code s} to vertex {@code v}; * {@code Double.POSITIVE_INFINITY} if no such path * @throws UnsupportedOperationException if there is a negative cost cycle reachable * from the source vertex {@code s} * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public double distTo(int v) { validateVertex(v); if (hasNegativeCycle()) throw new UnsupportedOperationException("Negative cost cycle exists"); return distTo[v]; } /** * Is there a path from the source {@code s} to vertex {@code v}? * @param v the destination vertex * @return {@code true} if there is a path from the source vertex * {@code s} to vertex {@code v}, and {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public boolean hasPathTo(int v) { validateVertex(v); return distTo[v] < Double.POSITIVE_INFINITY; } /** * Returns a shortest path from the source {@code s} to vertex {@code v}. * @param v the destination vertex * @return a shortest path from the source {@code s} to vertex {@code v} * as an iterable of edges, and {@code null} if no such path * @throws UnsupportedOperationException if there is a negative cost cycle reachable * from the source vertex {@code s} * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public Iterable pathTo(int v) { validateVertex(v); if (hasNegativeCycle()) throw new UnsupportedOperationException("Negative cost cycle exists"); if (!hasPathTo(v)) return null; Stack path = new Stack(); for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) { path.push(e); } return path; } // check optimality conditions: either // (i) there exists a negative cycle reacheable from s // or // (ii) for all edges e = v->w: distTo[w] <= distTo[v] + e.weight() // (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight() private boolean check(EdgeWeightedDigraph G, int s) { // has a negative cycle if (hasNegativeCycle()) { double weight = 0.0; for (DirectedEdge e : negativeCycle()) { weight += e.weight(); } if (weight >= 0.0) { System.err.println("error: weight of negative cycle = " + weight); return false; } } // no negative cycle reachable from source else { // check that distTo[v] and edgeTo[v] are consistent if (distTo[s] != 0.0 || edgeTo[s] != null) { System.err.println("distanceTo[s] and edgeTo[s] inconsistent"); return false; } for (int v = 0; v < G.V(); v++) { if (v == s) continue; if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) { System.err.println("distTo[] and edgeTo[] inconsistent"); return false; } } // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight() for (int v = 0; v < G.V(); v++) { for (DirectedEdge e : G.adj(v)) { int w = e.to(); if (distTo[v] + e.weight() < distTo[w]) { System.err.println("edge " + e + " not relaxed"); return false; } } } // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight() for (int w = 0; w < G.V(); w++) { if (edgeTo[w] == null) continue; DirectedEdge e = edgeTo[w]; int v = e.from(); if (w != e.to()) return false; if (distTo[v] + e.weight() != distTo[w]) { System.err.println("edge " + e + " on shortest path not tight"); return false; } } } StdOut.println("Satisfies optimality conditions"); StdOut.println(); return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = distTo.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code BellmanFordSP} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); int s = Integer.parseInt(args[1]); EdgeWeightedDigraph G = new EdgeWeightedDigraph(in); BellmanFordSP sp = new BellmanFordSP(G, s); // print negative cycle if (sp.hasNegativeCycle()) { for (DirectedEdge e : sp.negativeCycle()) StdOut.println(e); } // print shortest paths else { for (int v = 0; v < G.V(); v++) { if (sp.hasPathTo(v)) { StdOut.printf("%d to %d (%5.2f) ", s, v, sp.distTo(v)); for (DirectedEdge e : sp.pathTo(v)) { StdOut.print(e + " "); } StdOut.println(); } else { StdOut.printf("%d to %d no path\n", s, v); } } } } } /****************************************************************************** * Copyright 2002-2018, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/





© 2015 - 2024 Weber Informatics LLC | Privacy Policy