
edu.princeton.cs.algs4.BipartiteX Maven / Gradle / Ivy
Show all versions of algorithm Show documentation
/******************************************************************************
* Compilation: javac BipartiteX.java
* Execution: java Bipartite V E F
* Dependencies: Graph.java
*
* Given a graph, find either (i) a bipartition or (ii) an odd-length cycle.
* Runs in O(E + V) time.
*
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code BipartiteX} class represents a data type for
* determining whether an undirected graph is bipartite or whether
* it has an odd-length cycle.
* The isBipartite operation determines whether the graph is
* bipartite. If so, the color operation determines a
* bipartition; if not, the oddCycle operation determines a
* cycle with an odd number of edges.
*
* This implementation uses breadth-first search and is nonrecursive.
* The constructor takes time proportional to V + E
* (in the worst case),
* where V is the number of vertices and E is the number of edges.
* Afterwards, the isBipartite and color operations
* take constant time; the oddCycle operation takes time proportional
* to the length of the cycle.
* See {@link Bipartite} for a recursive version that uses depth-first search.
*
* For additional documentation,
* see Section 4.1
* of Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class BipartiteX {
private static final boolean WHITE = false;
private static final boolean BLACK = true;
private boolean isBipartite; // is the graph bipartite?
private boolean[] color; // color[v] gives vertices on one side of bipartition
private boolean[] marked; // marked[v] = true iff v has been visited in DFS
private int[] edgeTo; // edgeTo[v] = last edge on path to v
private Queue cycle; // odd-length cycle
/**
* Determines whether an undirected graph is bipartite and finds either a
* bipartition or an odd-length cycle.
*
* @param G the graph
*/
public BipartiteX(Graph G) {
isBipartite = true;
color = new boolean[G.V()];
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V() && isBipartite; v++) {
if (!marked[v]) {
bfs(G, v);
}
}
assert check(G);
}
private void bfs(Graph G, int s) {
Queue q = new Queue();
color[s] = WHITE;
marked[s] = true;
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
marked[w] = true;
edgeTo[w] = v;
color[w] = !color[v];
q.enqueue(w);
}
else if (color[w] == color[v]) {
isBipartite = false;
// to form odd cycle, consider s-v path and s-w path
// and let x be closest node to v and w common to two paths
// then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
// Note: distTo[v] == distTo[w];
cycle = new Queue();
Stack stack = new Stack();
int x = v, y = w;
while (x != y) {
stack.push(x);
cycle.enqueue(y);
x = edgeTo[x];
y = edgeTo[y];
}
stack.push(x);
while (!stack.isEmpty())
cycle.enqueue(stack.pop());
cycle.enqueue(w);
return;
}
}
}
}
/**
* Returns true if the graph is bipartite.
*
* @return {@code true} if the graph is bipartite; {@code false} otherwise
*/
public boolean isBipartite() {
return isBipartite;
}
/**
* Returns the side of the bipartite that vertex {@code v} is on.
*
* @param v the vertex
* @return the side of the bipartition that vertex {@code v} is on; two vertices
* are in the same side of the bipartition if and only if they have the
* same color
* @throws IllegalArgumentException unless {@code 0 <= v < V}
* @throws UnsupportedOperationException if this method is called when the graph
* is not bipartite
*/
public boolean color(int v) {
validateVertex(v);
if (!isBipartite)
throw new UnsupportedOperationException("Graph is not bipartite");
return color[v];
}
/**
* Returns an odd-length cycle if the graph is not bipartite, and
* {@code null} otherwise.
*
* @return an odd-length cycle if the graph is not bipartite
* (and hence has an odd-length cycle), and {@code null}
* otherwise
*/
public Iterable oddCycle() {
return cycle;
}
private boolean check(Graph G) {
// graph is bipartite
if (isBipartite) {
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (color[v] == color[w]) {
System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w);
return false;
}
}
}
}
// graph has an odd-length cycle
else {
// verify cycle
int first = -1, last = -1;
for (int v : oddCycle()) {
if (first == -1) first = v;
last = v;
}
if (first != last) {
System.err.printf("cycle begins with %d and ends with %d\n", first, last);
return false;
}
}
return true;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
int V = marked.length;
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}
/**
* Unit tests the {@code BipartiteX} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int V1 = Integer.parseInt(args[0]);
int V2 = Integer.parseInt(args[1]);
int E = Integer.parseInt(args[2]);
int F = Integer.parseInt(args[3]);
// create random bipartite graph with V1 vertices on left side,
// V2 vertices on right side, and E edges; then add F random edges
Graph G = GraphGenerator.bipartite(V1, V2, E);
for (int i = 0; i < F; i++) {
int v = StdRandom.uniform(V1 + V2);
int w = StdRandom.uniform(V1 + V2);
G.addEdge(v, w);
}
StdOut.println(G);
BipartiteX b = new BipartiteX(G);
if (b.isBipartite()) {
StdOut.println("Graph is bipartite");
for (int v = 0; v < G.V(); v++) {
StdOut.println(v + ": " + b.color(v));
}
}
else {
StdOut.print("Graph has an odd-length cycle: ");
for (int x : b.oddCycle()) {
StdOut.print(x + " ");
}
StdOut.println();
}
}
}
/******************************************************************************
* Copyright 2002-2018, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/