All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algs4.DijkstraUndirectedSP Maven / Gradle / Ivy

/******************************************************************************
 *  Compilation:  javac DijkstraUndirectedSP.java
 *  Execution:    java DijkstraUndirectedSP input.txt s
 *  Dependencies: EdgeWeightedGraph.java IndexMinPQ.java Stack.java Edge.java
 *  Data files:   https://algs4.cs.princeton.edu/43mst/tinyEWG.txt
 *                https://algs4.cs.princeton.edu/43mst/mediumEWG.txt
 *                https://algs4.cs.princeton.edu/43mst/largeEWG.txt
 *
 *  Dijkstra's algorithm. Computes the shortest path tree.
 *  Assumes all weights are nonnegative.
 *
 *  % java DijkstraUndirectedSP tinyEWG.txt 6
 *  6 to 0 (0.58)  6-0 0.58000
 *  6 to 1 (0.76)  6-2 0.40000   1-2 0.36000
 *  6 to 2 (0.40)  6-2 0.40000
 *  6 to 3 (0.52)  3-6 0.52000
 *  6 to 4 (0.93)  6-4 0.93000
 *  6 to 5 (1.02)  6-2 0.40000   2-7 0.34000   5-7 0.28000
 *  6 to 6 (0.00)
 *  6 to 7 (0.74)  6-2 0.40000   2-7 0.34000
 *
 *  % java DijkstraUndirectedSP mediumEWG.txt 0
 *  0 to 0 (0.00)
 *  0 to 1 (0.71)  0-44 0.06471   44-93  0.06793  ...   1-107 0.07484
 *  0 to 2 (0.65)  0-44 0.06471   44-231 0.10384  ...   2-42  0.11456
 *  0 to 3 (0.46)  0-97 0.07705   97-248 0.08598  ...   3-45  0.11902
 *  ...
 *
 *  % java DijkstraUndirectedSP largeEWG.txt 0
 *  0 to 0 (0.00)  
 *  0 to 1 (0.78)  0-460790 0.00190  460790-696678 0.00173   ...   1-826350 0.00191
 *  0 to 2 (0.61)  0-15786  0.00130  15786-53370   0.00113   ...   2-793420 0.00040
 *  0 to 3 (0.31)  0-460790 0.00190  460790-752483 0.00194   ...   3-698373 0.00172
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;


/**
 *  The {@code DijkstraUndirectedSP} class represents a data type for solving
 *  the single-source shortest paths problem in edge-weighted graphs
 *  where the edge weights are nonnegative.
 *  

* This implementation uses Dijkstra's algorithm with a binary heap. * The constructor takes time proportional to E log V, * where V is the number of vertices and E is the number of edges. * Each call to {@code distTo(int)} and {@code hasPathTo(int)} takes constant time; * each call to {@code pathTo(int)} takes time proportional to the number of * edges in the shortest path returned. *

* For additional documentation, * see Section 4.4 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * See {@link DijkstraSP} for a version on edge-weighted digraphs. * * @author Robert Sedgewick * @author Kevin Wayne * @author Nate Liu */ public class DijkstraUndirectedSP { private double[] distTo; // distTo[v] = distance of shortest s->v path private Edge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private IndexMinPQ pq; // priority queue of vertices /** * Computes a shortest-paths tree from the source vertex {@code s} to every * other vertex in the edge-weighted graph {@code G}. * * @param G the edge-weighted digraph * @param s the source vertex * @throws IllegalArgumentException if an edge weight is negative * @throws IllegalArgumentException unless {@code 0 <= s < V} */ public DijkstraUndirectedSP(EdgeWeightedGraph G, int s) { for (Edge e : G.edges()) { if (e.weight() < 0) throw new IllegalArgumentException("edge " + e + " has negative weight"); } distTo = new double[G.V()]; edgeTo = new Edge[G.V()]; validateVertex(s); for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0; // relax vertices in order of distance from s pq = new IndexMinPQ(G.V()); pq.insert(s, distTo[s]); while (!pq.isEmpty()) { int v = pq.delMin(); for (Edge e : G.adj(v)) relax(e, v); } // check optimality conditions assert check(G, s); } // relax edge e and update pq if changed private void relax(Edge e, int v) { int w = e.other(v); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight(); edgeTo[w] = e; if (pq.contains(w)) pq.decreaseKey(w, distTo[w]); else pq.insert(w, distTo[w]); } } /** * Returns the length of a shortest path between the source vertex {@code s} and * vertex {@code v}. * * @param v the destination vertex * @return the length of a shortest path between the source vertex {@code s} and * the vertex {@code v}; {@code Double.POSITIVE_INFINITY} if no such path * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public double distTo(int v) { validateVertex(v); return distTo[v]; } /** * Returns true if there is a path between the source vertex {@code s} and * vertex {@code v}. * * @param v the destination vertex * @return {@code true} if there is a path between the source vertex * {@code s} to vertex {@code v}; {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public boolean hasPathTo(int v) { validateVertex(v); return distTo[v] < Double.POSITIVE_INFINITY; } /** * Returns a shortest path between the source vertex {@code s} and vertex {@code v}. * * @param v the destination vertex * @return a shortest path between the source vertex {@code s} and vertex {@code v}; * {@code null} if no such path * @throws IllegalArgumentException unless {@code 0 <= v < V} */ public Iterable pathTo(int v) { validateVertex(v); if (!hasPathTo(v)) return null; Stack path = new Stack(); int x = v; for (Edge e = edgeTo[v]; e != null; e = edgeTo[x]) { path.push(e); x = e.other(x); } return path; } // check optimality conditions: // (i) for all edges e = v-w: distTo[w] <= distTo[v] + e.weight() // (ii) for all edge e = v-w on the SPT: distTo[w] == distTo[v] + e.weight() private boolean check(EdgeWeightedGraph G, int s) { // check that edge weights are nonnegative for (Edge e : G.edges()) { if (e.weight() < 0) { System.err.println("negative edge weight detected"); return false; } } // check that distTo[v] and edgeTo[v] are consistent if (distTo[s] != 0.0 || edgeTo[s] != null) { System.err.println("distTo[s] and edgeTo[s] inconsistent"); return false; } for (int v = 0; v < G.V(); v++) { if (v == s) continue; if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) { System.err.println("distTo[] and edgeTo[] inconsistent"); return false; } } // check that all edges e = v-w satisfy distTo[w] <= distTo[v] + e.weight() for (int v = 0; v < G.V(); v++) { for (Edge e : G.adj(v)) { int w = e.other(v); if (distTo[v] + e.weight() < distTo[w]) { System.err.println("edge " + e + " not relaxed"); return false; } } } // check that all edges e = v-w on SPT satisfy distTo[w] == distTo[v] + e.weight() for (int w = 0; w < G.V(); w++) { if (edgeTo[w] == null) continue; Edge e = edgeTo[w]; if (w != e.either() && w != e.other(e.either())) return false; int v = e.other(w); if (distTo[v] + e.weight() != distTo[w]) { System.err.println("edge " + e + " on shortest path not tight"); return false; } } return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = distTo.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code DijkstraUndirectedSP} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); EdgeWeightedGraph G = new EdgeWeightedGraph(in); int s = Integer.parseInt(args[1]); // compute shortest paths DijkstraUndirectedSP sp = new DijkstraUndirectedSP(G, s); // print shortest path for (int t = 0; t < G.V(); t++) { if (sp.hasPathTo(t)) { StdOut.printf("%d to %d (%.2f) ", s, t, sp.distTo(t)); for (Edge e : sp.pathTo(t)) { StdOut.print(e + " "); } StdOut.println(); } else { StdOut.printf("%d to %d no path\n", s, t); } } } } /****************************************************************************** * Copyright 2002-2018, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/





© 2015 - 2025 Weber Informatics LLC | Privacy Policy