All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algs4.KosarajuSharirSCC Maven / Gradle / Ivy

The newest version!
/******************************************************************************
 *  Compilation:  javac KosarajuSharirSCC.java
 *  Execution:    java KosarajuSharirSCC filename.txt
 *  Dependencies: Digraph.java TransitiveClosure.java StdOut.java In.java
 *  Data files:   https://algs4.cs.princeton.edu/42digraph/tinyDG.txt
 *                https://algs4.cs.princeton.edu/42digraph/mediumDG.txt
 *                https://algs4.cs.princeton.edu/42digraph/largeDG.txt
 *
 *  Compute the strongly-connected components of a digraph using the
 *  Kosaraju-Sharir algorithm.
 *
 *  Runs in O(E + V) time.
 *
 *  % java KosarajuSharirSCC tinyDG.txt
 *  5 strong components
 *  1 
 *  0 2 3 4 5 
 *  9 10 11 12 
 *  6 8 
 *  7
 *
 *  % java KosarajuSharirSCC mediumDG.txt 
 *  10 strong components
 *  21 
 *  2 5 6 8 9 11 12 13 15 16 18 19 22 23 25 26 28 29 30 31 32 33 34 35 37 38 39 40 42 43 44 46 47 48 49 
 *  14 
 *  3 4 17 20 24 27 36 
 *  41 
 *  7 
 *  45 
 *  1 
 *  0 
 *  10 
 *
 *  % java -Xss50m KosarajuSharirSCC mediumDG.txt 
 *  25 strong components
 *  7 11 32 36 61 84 95 116 121 128 230   ...
 *  28 73 80 104 115 143 149 164 184 185  ...
 *  38 40 200 201 207 218 286 387 418 422 ...
 *  12 14 56 78 87 103 216 269 271 272    ...
 *  42 48 112 135 160 217 243 246 273 346 ...
 *  46 76 96 97 224 237 297 303 308 309   ...
 *  9 15 21 22 27 90 167 214 220 225 227  ...
 *  74 99 133 146 161 166 202 205 245 262 ...
 *  43 83 94 120 125 183 195 206 244 254  ...
 *  1 13 54 91 92 93 106 140 156 194 208  ...
 *  10 39 67 69 131 144 145 154 168 258   ...
 *  6 52 66 113 118 122 139 147 212 213   ...
 *  8 127 150 182 203 204 249 367 400 432 ...
 *  63 65 101 107 108 136 169 170 171 173 ...
 *  55 71 102 155 159 198 228 252 325 419 ...
 *  4 25 34 58 70 152 172 196 199 210 226 ...
 *  2 44 50 88 109 138 141 178 197 211    ...
 *  57 89 129 162 174 179 188 209 238 276 ...
 *  33 41 49 119 126 132 148 181 215 221  ...
 *  3 18 23 26 35 64 105 124 157 186 251  ...
 *  5 16 17 20 31 47 81 98 158 180 187    ...
 *  24 29 51 59 75 82 100 114 117 134 151 ...
 *  30 45 53 60 72 85 111 130 137 142 163 ...
 *  19 37 62 77 79 110 153 352 353 361    ...
 *  0 68 86 123 165 176 193 239 289 336   ...
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code KosarajuSharirSCC} class represents a data type for 
 *  determining the strong components in a digraph.
 *  The id operation determines in which strong component
 *  a given vertex lies; the areStronglyConnected operation
 *  determines whether two vertices are in the same strong component;
 *  and the count operation determines the number of strong
 *  components.

 *  The component identifier of a component is one of the
 *  vertices in the strong component: two vertices have the same component
 *  identifier if and only if they are in the same strong component.

 *  

* This implementation uses the Kosaraju-Sharir algorithm. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the id, count, and areStronglyConnected * operations take constant time. * For alternate implementations of the same API, see * {@link TarjanSCC} and {@link GabowSCC}. *

* For additional documentation, * see Section 4.2 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class KosarajuSharirSCC { private boolean[] marked; // marked[v] = has vertex v been visited? private int[] id; // id[v] = id of strong component containing v private int count; // number of strongly-connected components /** * Computes the strong components of the digraph {@code G}. * @param G the digraph */ public KosarajuSharirSCC(Digraph G) { // compute reverse postorder of reverse graph DepthFirstOrder dfs = new DepthFirstOrder(G.reverse()); // run DFS on G, using reverse postorder to guide calculation marked = new boolean[G.V()]; id = new int[G.V()]; for (int v : dfs.reversePost()) { if (!marked[v]) { dfs(G, v); count++; } } // check that id[] gives strong components assert check(G); } // DFS on graph G private void dfs(Digraph G, int v) { marked[v] = true; id[v] = count; for (int w : G.adj(v)) { if (!marked[w]) dfs(G, w); } } /** * Returns the number of strong components. * @return the number of strong components */ public int count() { return count; } /** * Are vertices {@code v} and {@code w} in the same strong component? * @param v one vertex * @param w the other vertex * @return {@code true} if vertices {@code v} and {@code w} are in the same * strong component, and {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} * @throws IllegalArgumentException unless {@code 0 <= w < V} */ public boolean stronglyConnected(int v, int w) { validateVertex(v); validateVertex(w); return id[v] == id[w]; } /** * Returns the component id of the strong component containing vertex {@code v}. * @param v the vertex * @return the component id of the strong component containing vertex {@code v} * @throws IllegalArgumentException unless {@code 0 <= s < V} */ public int id(int v) { validateVertex(v); return id[v]; } // does the id[] array contain the strongly connected components? private boolean check(Digraph G) { TransitiveClosure tc = new TransitiveClosure(G); for (int v = 0; v < G.V(); v++) { for (int w = 0; w < G.V(); w++) { if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v))) return false; } } return true; } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = marked.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code KosarajuSharirSCC} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); KosarajuSharirSCC scc = new KosarajuSharirSCC(G); // number of connected components int m = scc.count(); StdOut.println(m + " strong components"); // compute list of vertices in each strong component Queue[] components = (Queue[]) new Queue[m]; for (int i = 0; i < m; i++) { components[i] = new Queue(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < m; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } } /****************************************************************************** * Copyright 2002-2018, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/





© 2015 - 2024 Weber Informatics LLC | Privacy Policy