All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algs4.LazyPrimMST Maven / Gradle / Ivy

The newest version!
/******************************************************************************
 *  Compilation:  javac LazyPrimMST.java
 *  Execution:    java LazyPrimMST filename.txt
 *  Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
 *                MinPQ.java UF.java In.java StdOut.java
 *  Data files:   https://algs4.cs.princeton.edu/43mst/tinyEWG.txt
 *                https://algs4.cs.princeton.edu/43mst/mediumEWG.txt
 *                https://algs4.cs.princeton.edu/43mst/largeEWG.txt
 *
 *  Compute a minimum spanning forest using a lazy version of Prim's 
 *  algorithm.
 *
 *  %  java LazyPrimMST tinyEWG.txt 
 *  0-7 0.16000
 *  1-7 0.19000
 *  0-2 0.26000
 *  2-3 0.17000
 *  5-7 0.28000
 *  4-5 0.35000
 *  6-2 0.40000
 *  1.81000
 *
 *  % java LazyPrimMST mediumEWG.txt
 *  0-225   0.02383
 *  49-225  0.03314
 *  44-49   0.02107
 *  44-204  0.01774
 *  49-97   0.03121
 *  202-204 0.04207
 *  176-202 0.04299
 *  176-191 0.02089
 *  68-176  0.04396
 *  58-68   0.04795
 *  10.46351
 *
 *  % java LazyPrimMST largeEWG.txt
 *  ...
 *  647.66307
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code LazyPrimMST} class represents a data type for computing a
 *  minimum spanning tree in an edge-weighted graph.
 *  The edge weights can be positive, zero, or negative and need not
 *  be distinct. If the graph is not connected, it computes a minimum
 *  spanning forest, which is the union of minimum spanning trees
 *  in each connected component. The {@code weight()} method returns the 
 *  weight of a minimum spanning tree and the {@code edges()} method
 *  returns its edges.
 *  

* This implementation uses a lazy version of Prim's algorithm * with a binary heap of edges. * The constructor takes time proportional to E log E * and extra space (not including the graph) proportional to E, * where V is the number of vertices and E is the number of edges. * Afterwards, the {@code weight()} method takes constant time * and the {@code edges()} method takes time proportional to V. *

* For additional documentation, * see Section 4.3 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * For alternate implementations, see {@link PrimMST}, {@link KruskalMST}, * and {@link BoruvkaMST}. * * @author Robert Sedgewick * @author Kevin Wayne */ public class LazyPrimMST { private static final double FLOATING_POINT_EPSILON = 1E-12; private double weight; // total weight of MST private Queue mst; // edges in the MST private boolean[] marked; // marked[v] = true iff v on tree private MinPQ pq; // edges with one endpoint in tree /** * Compute a minimum spanning tree (or forest) of an edge-weighted graph. * @param G the edge-weighted graph */ public LazyPrimMST(EdgeWeightedGraph G) { mst = new Queue(); pq = new MinPQ(); marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) // run Prim from all vertices to if (!marked[v]) prim(G, v); // get a minimum spanning forest // check optimality conditions assert check(G); } // run Prim's algorithm private void prim(EdgeWeightedGraph G, int s) { scan(G, s); while (!pq.isEmpty()) { // better to stop when mst has V-1 edges Edge e = pq.delMin(); // smallest edge on pq int v = e.either(), w = e.other(v); // two endpoints assert marked[v] || marked[w]; if (marked[v] && marked[w]) continue; // lazy, both v and w already scanned mst.enqueue(e); // add e to MST weight += e.weight(); if (!marked[v]) scan(G, v); // v becomes part of tree if (!marked[w]) scan(G, w); // w becomes part of tree } } // add all edges e incident to v onto pq if the other endpoint has not yet been scanned private void scan(EdgeWeightedGraph G, int v) { assert !marked[v]; marked[v] = true; for (Edge e : G.adj(v)) if (!marked[e.other(v)]) pq.insert(e); } /** * Returns the edges in a minimum spanning tree (or forest). * @return the edges in a minimum spanning tree (or forest) as * an iterable of edges */ public Iterable edges() { return mst; } /** * Returns the sum of the edge weights in a minimum spanning tree (or forest). * @return the sum of the edge weights in a minimum spanning tree (or forest) */ public double weight() { return weight; } // check optimality conditions (takes time proportional to E V lg* V) private boolean check(EdgeWeightedGraph G) { // check weight double totalWeight = 0.0; for (Edge e : edges()) { totalWeight += e.weight(); } if (Math.abs(totalWeight - weight()) > FLOATING_POINT_EPSILON) { System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight()); return false; } // check that it is acyclic UF uf = new UF(G.V()); for (Edge e : edges()) { int v = e.either(), w = e.other(v); if (uf.connected(v, w)) { System.err.println("Not a forest"); return false; } uf.union(v, w); } // check that it is a spanning forest for (Edge e : G.edges()) { int v = e.either(), w = e.other(v); if (!uf.connected(v, w)) { System.err.println("Not a spanning forest"); return false; } } // check that it is a minimal spanning forest (cut optimality conditions) for (Edge e : edges()) { // all edges in MST except e uf = new UF(G.V()); for (Edge f : mst) { int x = f.either(), y = f.other(x); if (f != e) uf.union(x, y); } // check that e is min weight edge in crossing cut for (Edge f : G.edges()) { int x = f.either(), y = f.other(x); if (!uf.connected(x, y)) { if (f.weight() < e.weight()) { System.err.println("Edge " + f + " violates cut optimality conditions"); return false; } } } } return true; } /** * Unit tests the {@code LazyPrimMST} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); EdgeWeightedGraph G = new EdgeWeightedGraph(in); LazyPrimMST mst = new LazyPrimMST(G); for (Edge e : mst.edges()) { StdOut.println(e); } StdOut.printf("%.5f\n", mst.weight()); } } /****************************************************************************** * Copyright 2002-2018, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/





© 2015 - 2024 Weber Informatics LLC | Privacy Policy