All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algs4.TransitiveClosure Maven / Gradle / Ivy

The newest version!
/******************************************************************************
 *  Compilation:  javac TransitiveClosure.java
 *  Execution:    java TransitiveClosure filename.txt
 *  Dependencies: Digraph.java DepthFirstDirectedPaths.java In.java StdOut.java
 *  Data files:   https://algs4.cs.princeton.edu/42digraph/tinyDG.txt
 *
 *  Compute transitive closure of a digraph and support
 *  reachability queries.
 *
 *  Preprocessing time: O(V(E + V)) time.
 *  Query time: O(1).
 *  Space: O(V^2).
 *
 *  % java TransitiveClosure tinyDG.txt
 *         0  1  2  3  4  5  6  7  8  9 10 11 12
 *  --------------------------------------------
 *    0:   T  T  T  T  T  T                     
 *    1:      T                                 
 *    2:   T  T  T  T  T  T                     
 *    3:   T  T  T  T  T  T                     
 *    4:   T  T  T  T  T  T                     
 *    5:   T  T  T  T  T  T                     
 *    6:   T  T  T  T  T  T  T        T  T  T  T
 *    7:   T  T  T  T  T  T  T  T  T  T  T  T  T
 *    8:   T  T  T  T  T  T  T  T  T  T  T  T  T
 *    9:   T  T  T  T  T  T           T  T  T  T
 *   10:   T  T  T  T  T  T           T  T  T  T
 *   11:   T  T  T  T  T  T           T  T  T  T
 *   12:   T  T  T  T  T  T           T  T  T  T
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code TransitiveClosure} class represents a data type for 
 *  computing the transitive closure of a digraph.
 *  

* This implementation runs depth-first search from each vertex. * The constructor takes time proportional to V(V + E) * (in the worst case) and uses space proportional to V2, * where V is the number of vertices and E is the number of edges. *

* For large digraphs, you may want to consider a more sophisticated algorithm. * Nuutila proposes two * algorithm for the problem (based on strong components and an interval representation) * that runs in E + V time on typical digraphs. * * For additional documentation, * see Section 4.2 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class TransitiveClosure { private DirectedDFS[] tc; // tc[v] = reachable from v /** * Computes the transitive closure of the digraph {@code G}. * @param G the digraph */ public TransitiveClosure(Digraph G) { tc = new DirectedDFS[G.V()]; for (int v = 0; v < G.V(); v++) tc[v] = new DirectedDFS(G, v); } /** * Is there a directed path from vertex {@code v} to vertex {@code w} in the digraph? * @param v the source vertex * @param w the target vertex * @return {@code true} if there is a directed path from {@code v} to {@code w}, * {@code false} otherwise * @throws IllegalArgumentException unless {@code 0 <= v < V} * @throws IllegalArgumentException unless {@code 0 <= w < V} */ public boolean reachable(int v, int w) { validateVertex(v); validateVertex(w); return tc[v].marked(w); } // throw an IllegalArgumentException unless {@code 0 <= v < V} private void validateVertex(int v) { int V = tc.length; if (v < 0 || v >= V) throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); } /** * Unit tests the {@code TransitiveClosure} data type. * * @param args the command-line arguments */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); TransitiveClosure tc = new TransitiveClosure(G); // print header StdOut.print(" "); for (int v = 0; v < G.V(); v++) StdOut.printf("%3d", v); StdOut.println(); StdOut.println("--------------------------------------------"); // print transitive closure for (int v = 0; v < G.V(); v++) { StdOut.printf("%3d: ", v); for (int w = 0; w < G.V(); w++) { if (tc.reachable(v, w)) StdOut.printf(" T"); else StdOut.printf(" "); } StdOut.println(); } } } /****************************************************************************** * Copyright 2002-2018, Robert Sedgewick and Kevin Wayne. * * This file is part of algs4.jar, which accompanies the textbook * * Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne, * Addison-Wesley Professional, 2011, ISBN 0-321-57351-X. * http://algs4.cs.princeton.edu * * * algs4.jar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * algs4.jar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with algs4.jar. If not, see http://www.gnu.org/licenses. ******************************************************************************/





© 2015 - 2025 Weber Informatics LLC | Privacy Policy