All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.mchange.sc.v1.reconcile.Reconcilable.scala Maven / Gradle / Ivy

The newest version!
/*
 * Distributed as part of mchange-commons-scala
 *
 * Copyright (C) 2013 Machinery For Change, Inc.
 *
 * Author: Steve Waldman 
 *
 * This library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 2.1, as 
 * published by the Free Software Foundation.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this software; see the file LICENSE.  If not, write to the
 * Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 * Boston, MA 02111-1307, USA.
 */

package com.mchange.sc.v1.reconcile;

/**
 * The idea here is to define a kind of value object that may be specified
 * or acquired in a manner that is only partially complete. Information from multiple instances
 * of such Objects may be "reconciled" to yield a more complete description of the
 * business object being modeled.
 *
 * Data that may sometimes be unspecified should be modeled as Option[_] objects.
 *
 * Reconciliation can be symmetrical, such that clearly inconsistent data trigger
 * a CantReconcileException, or may be asymmetrical, such that data in higher priority
 * objects shadow conflicting data in lower priority objects. reconcile and
 * reconcileLeaf are symmetrical implementations, reconcileOver and reconcileOverLeaf
 * are asymmetrical implementations.
 * 
 * Reconcilable classes should generally be final.
 * Utility methods only try to reconcile objects of identical implementation class.
 */
abstract trait Reconcilable[T <: Reconcilable[T]]
{
  def reconcile(other : T) : T;
  def reconcileOver(other : T) : T;
}

object Reconcilable
{
  /**
   * For when one is retrieving values from multiple
   * sources and any unique non-None value wins.
   */
  def reconcileLeaf[T](a : Option[T], b : Option[T]) : Option[T] =
  {
    if (a == b)                      a; // covers the None == None case
    else if (a != None && b == None) a;
    else if (a == None && b != None) b;
    else CantReconcileException.ouch( a, b ); 
  }

  def reconcileOverLeaf[T](a : Option[T], b : Option[T]) : Option[T] =
  {
    if (a == b)                      a; // covers the None == None case
    else if (a != None && b == None) a;
    else if (a == None && b != None) b;
    else a;
  }

  def reconcileLeaf[T](a : T, b : T) : T =
  {
    if (a == b)                      a; 
    else CantReconcileException.ouch( a, b ); 
  }

  def reconcileOverLeaf[T](a : T, b : T) : T = a;

  def reconcile[T<: Reconcilable[T]](a : Option[T], b : Option[T]) : Option[T] =
  {
    if (a == b)                      a; // covers the None == None case
    else if (a != None && b == None) a;
    else if (a == None && b != None) b;
    else 
      {
	val aVal : T = a.get;
	val bVal : T = b.get;
	Some(reconcile( aVal, bVal ));
      } 
  }

  def reconcileOver[T<: Reconcilable[T]](a : Option[T], b : Option[T]) : Option[T] =
  {
    if (a == b)                      a; // covers the None == None case
    else if (a != None && b == None) a;
    else if (a == None && b != None) b;
    else                           
      {
	val aVal : T = a.get;
	val bVal : T = b.get;
	Some(reconcileOver( aVal, bVal ));
      } 
  }


/*
  def reconcile[T](a : T, b : Option[T]) : Option[T] =
  { reconcile( Some(a), b); }

  def reconcile[T](a : Option[T], b : T) : Option[T] =
  { reconcile( a, Some(b) ); }
*/

  def reconcile[T<:Reconcilable[T]]( a : T, b : T) : T =
  {
    require(a.getClass == b.getClass)
    a.reconcile(b);
  }

  def reconcileOver[T<:Reconcilable[T]]( a : T, b : T) : T =
  {
    require(a.getClass == b.getClass)
    a.reconcileOver(b);
  }


/*
  def reconcile[T<:Reconcilable[T]]( a : T, b : T) : T =
  {
//    if (a.isInstanceOf[Reconcilable[T]] && b.isInstanceOf[Reconcilable[T]]
//	&& a.asInstanceOf[Reconcilable[T]].getClass == b.asInstanceOf[Reconcilable[T]].getClass)
    if (a.getClass == b.getClass)
//      a.asInstanceOf[Reconcilable[T]].reconcileOver(b.asInstanceOf[T])
      a.reconcile(b);
    else
      CantReconcileException.ouch( a, b );
  }

  def reconcileOver[T<:Reconcilable[T]]( a : T, b : T) : T =
  {
    if (a.getClass == b.getClass)
      a.reconcileOver(b);
    else
      CantReconcileException.ouch( a, b );
  }
*/   

  def reconcile[T <: Reconcilable[T]]( tVals : Iterable[T] ) : T =
  { reconcile( tVals.toSeq ); }

  def reconcile[T <: Reconcilable[T]]( cq : Seq[T] ) : T =
  {
    require(cq.size > 0);
    cq.reduceLeft( (a, b) => a reconcile b );
  }

  def reconcileOver[T <: Reconcilable[T]]( tVals : Iterable[T] ) : T =
  { reconcileOver( tVals.toSeq ); }

  def reconcileOver[T <: Reconcilable[T]]( cq : Seq[T] ) : T =
  {
    require(cq.size > 0);
    cq.reduceLeft( (a, b) => a reconcileOver b );
  }

}





© 2015 - 2025 Weber Informatics LLC | Privacy Policy