All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.metsci.glimpse.util.math.stochastic.pdfcont.PdfContGaussianZiggurat Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2020, Metron, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Metron, Inc. nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL METRON, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package com.metsci.glimpse.util.math.stochastic.pdfcont;

import static com.metsci.glimpse.util.GeneralUtils.doublesEqual;

import com.metsci.glimpse.util.math.stochastic.Generator;

/**
 * This routine is based on the following article, with a couple of
 * modifications which simplify the implementation.
 *
 *     George Marsaglia, Wai Wan Tsang
 *     The Ziggurat Method for Generating Random Variables
 *     Journal of Statistical Software, vol. 5 (2000), no. 8
 *     http://www.jstatsoft.org/v05/i08/
 *
 * The modifications are:
 *
 * 1) use 128 steps instead of 256 to decrease the amount of static
 * data necessary.
 *
 * 2) use an acceptance sampling from an exponential wedge
 * exp(-R*(x-R/2)) for the tail of the base strip to simplify the
 * implementation.  The area of exponential wedge is used in
 * calculating 'v' and the coefficients in ziggurat table, so the
 * coefficients differ slightly from those in the Marsaglia and Tsang
 * paper.
 *
 * See also Leong et al, "A Comment on the Implementation of the
 * Ziggurat Method", Journal of Statistical Software, vol 5 (2005), no 7.
 *
 * @author osborn
 */
public class PdfContGaussianZiggurat implements PdfCont
{
    private final double _mean;
    private final double _stdev;

    public PdfContGaussianZiggurat( double mean, double stdev )
    {
        _mean = mean;
        _stdev = stdev;
    }

    @Override
    public double draw( Generator g )
    {
        int i, j;
        int sign = 1;
        double x, y;

        while ( true )
        {
            // choose the step
            i = g.nextInt( 256 );
            // sample from 2^24
            j = g.nextInt( 16777216 );
            sign = ( ( i & 0x80 ) == 128 ) ? 1 : -1;
            i &= 0x7f;

            x = j * wtab[ i ];
            if ( j < ktab[ i ] )
                break;

            if ( i < 127 )
            {
                double y0, y1, U1;
                y0 = ytab[ i ];
                y1 = ytab[ i + 1 ];
                U1 = g.nextDouble( );
                y = y1 + ( y0 - y1 ) * U1;
            }
            else
            {
                double U1, U2;
                U1 = 1.0 - g.nextDouble( );
                U2 = g.nextDouble( );
                x = PARAM_R - Math.log( U1 ) / PARAM_R;
                y = Math.exp( -PARAM_R * ( x - 0.5 * PARAM_R ) ) * U2;
            }

            if ( y < Math.exp( -0.5 * x * x ) )
            {
                break;
            }
        }

        return _mean + sign * _stdev * x;
    }

    /* position of right-most step */
    private final static double PARAM_R = 3.44428647676;

    /* tabulated values for the heigt of the Ziggurat levels */
    private final static double[] ytab =
    {
        1, 0.963598623011, 0.936280813353, 0.913041104253,
        0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349,
        0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505,
        0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285,
        0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891,
        0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896,
        0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296,
        0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911,
        0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628,
        0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812,
        0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214,
        0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022,
        0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955,
        0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334,
        0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776,
        0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497,
        0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571,
        0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387,
        0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932,
        0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518,
        0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745,
        0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324,
        0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964,
        0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669,
        0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703,
        0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266,
        0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295,
        0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745,
        0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769,
        0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411,
        0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854,
        0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565
    };

    /* tabulated values for 2^24 times x[i]/x[i+1],
     * used to accept for U*x[i+1]<=x[i] without any floating point operations */
    private static final long[] ktab =
    {
        0, 12590644, 14272653, 14988939,
        15384584, 15635009, 15807561, 15933577,
        16029594, 16105155, 16166147, 16216399,
        16258508, 16294295, 16325078, 16351831,
        16375291, 16396026, 16414479, 16431002,
        16445880, 16459343, 16471578, 16482744,
        16492970, 16502368, 16511031, 16519039,
        16526459, 16533352, 16539769, 16545755,
        16551348, 16556584, 16561493, 16566101,
        16570433, 16574511, 16578353, 16581977,
        16585398, 16588629, 16591685, 16594575,
        16597311, 16599901, 16602354, 16604679,
        16606881, 16608968, 16610945, 16612818,
        16614592, 16616272, 16617861, 16619363,
        16620782, 16622121, 16623383, 16624570,
        16625685, 16626730, 16627708, 16628619,
        16629465, 16630248, 16630969, 16631628,
        16632228, 16632768, 16633248, 16633671,
        16634034, 16634340, 16634586, 16634774,
        16634903, 16634972, 16634980, 16634926,
        16634810, 16634628, 16634381, 16634066,
        16633680, 16633222, 16632688, 16632075,
        16631380, 16630598, 16629726, 16628757,
        16627686, 16626507, 16625212, 16623794,
        16622243, 16620548, 16618698, 16616679,
        16614476, 16612071, 16609444, 16606571,
        16603425, 16599973, 16596178, 16591995,
        16587369, 16582237, 16576520, 16570120,
        16562917, 16554758, 16545450, 16534739,
        16522287, 16507638, 16490152, 16468907,
        16442518, 16408804, 16364095, 16301683,
        16207738, 16047994, 15704248, 15472926
    };

    /* tabulated values of 2^{-24}*x[i] */
    private static final double[] wtab =
    {
        1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08,
        3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08,
        3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08,
        4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08,
        5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08,
        5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08,
        5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08,
        6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08,
        6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08,
        6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08,
        7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08,
        7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08,
        7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08,
        8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08,
        8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08,
        8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08,
        9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08,
        9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08,
        9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07,
        1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07,
        1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07,
        1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07,
        1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07,
        1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07,
        1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07,
        1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07,
        1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07,
        1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07,
        1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07,
        1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07,
        1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07,
        1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07
    };

    @Override
    public int hashCode( )
    {
        final int prime = 20521;
        int result = 1;
        result = prime * result + Double.hashCode( _mean );
        result = prime * result + Double.hashCode( _stdev );
        return result;
    }

    @Override
    public boolean equals( Object o )
    {
        if ( o == this ) return true;
        if ( o == null ) return false;
        if ( o.getClass( ) != this.getClass( ) ) return false;

        PdfContGaussianZiggurat other = ( PdfContGaussianZiggurat ) o;
        return ( doublesEqual( other._mean, _mean )
              && doublesEqual( other._stdev, _stdev ) );
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy