Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package replpp.shaded
package geny
import scala.collection.mutable
import scala.reflect.ClassTag
/**
* Provides the `geny.Gen` data type, A Generator of elements of type [[A]].
*
* [[Generator]] is basically the inverse of
* a `scala.Iterator`: instead of the core functionality being the pull-based
* `hasNext` and `next: T` methods, the core is based around the push-based
* `generate` method. `generate` is basically an extra-customizable version of
* `foreach`, which allows the person calling it to provide basic control-flow
* instructions to the upstream Gens.
*
* Unlike a `scala.Iterator`, subclasses of [[Generator]] can guarantee any clean
* up logic is performed by placing it after the `generate` call is made.
*
* Transformations on a [[Generator]] are lazy: calling methods like `filter`
* or `map` do not evaluate the entire Gen, but instead construct a new
* Gen that delegates to the original. The only methods that evaluate
* the [[Generator]] are the "Action" methods like
* `generate`/`foreach`/`find`, or the "Conversion" methods like `toArray` or
* similar.
*
* `generate` takes a function returning `Gen.Action` rather that
* `Unit`. This allows a downstream Gen to provide basic control
* commands to the upstream Gens: i.e. [[Generator.End]] to cease
* enumeration of the upstream Gen. This allows it to avoid traversing and
* processing elements that the downstream Gen doesn't want/need to see
* anyway.
*/
trait Generator[+A]{
/**
* The core abstract method that defines the [[Generator]] trait. It is
* essentially the same as `.foreach`, but with additional configurability.
*
* @param handleItem How to handle a single item: performs any desired side
* effects, and returns a [[Generator.Action]] that
* determines how to continue the enumeration.
* @return an integer stating how many skipped elements from the
* `startingSkipped` input remain to be skipped after this
* `generate` call has completed.
*/
def generate(handleItem: A => Generator.Action): Generator.Action
// Actions
def foreach(f: A => Unit): Unit = generate{ x =>
f(x)
Generator.Continue
}
def find(f: A => Boolean): Option[A] = {
var result: Option[A] = None
generate{ t =>
if (!f(t)) Generator.Continue
else{
result = Some(t)
Generator.End
}
}
result
}
def exists(f: A => Boolean) = find(f(_)).isDefined
def contains(a: Any) = exists(_ == a)
def forall(f: A => Boolean) = !exists(!f(_))
def count(f: A => Boolean = ((_: Any) => true)) = {
var result = 0
generate{ t =>
if (f(t)) result += 1
Generator.Continue
}
result
}
def fold[B](start: B)(f: (B, A) => B): B = foldLeft(start)(f)
def foldLeft[B](start: B)(f: (B, A) => B): B = {
var result = start
generate{ t =>
result = f(result, t)
Generator.Continue
}
result
}
def reduce[B >: A](f: (B, A) => B): B = reduceLeft(f)
def reduceLeft[B >: A](f: (B, A) => B): B = {
var result: Option[B] = None
generate{ t =>
result = result match{
case None => Some(t)
case Some(old) => Some(f(old, t))
}
Generator.Continue
}
result.getOrElse(
throw new UnsupportedOperationException("empty.reduceLeft")
)
}
// Builders
def filter(pred: A => Boolean): Generator[A] = new Generator.Filtered(this, pred)
def withFilter(pred: A => Boolean): Generator[A] = new Generator.Filtered(this, pred)
def map[B](func: A => B): Generator[B] = new Generator.Mapped[B, A](this, func)
def flatMap[B](func: A => Generator[B]): Generator[B] = new Generator.FlatMapped[B, A](this, func)
def collect[B](func: PartialFunction[A, B]): Generator[B] =
filter(func.isDefinedAt).map(func)
def collectFirst[B](func: PartialFunction[A, B]): Option[B] =
filter(func.isDefinedAt).map(func).headOption
def flatten[V](implicit f: A => Generator[V]) = this.flatMap[V]((x: A) => f(x))
def slice(start: Int, end: Int): Generator[A] = new Generator.Sliced(this, start, end)
def take(n: Int) = slice(0, n)
def drop(n: Int) = slice(n, Int.MaxValue)
def takeWhile(pred: A => Boolean): Generator[A] = new Generator.TakeWhile(this, pred)
def dropWhile(pred: A => Boolean): Generator[A] = new Generator.DropWhile(this, pred)
def zipWithIndex: Generator[(A, Int)] = new Generator.ZipWithIndexed(this)
def zip[B](other: Iterable[B]): Generator[(A, B)] = new Generator.Zipped(this, other)
def ++[B >: A](other: Generator[B]): Generator[B] = new Generator.Concat(this, other)
// Conversions
def head = take(1).toSeq.head
def headOption = take(1).toSeq.headOption
def toBuffer[B >: A]: mutable.Buffer[B] = {
val arr = mutable.Buffer.empty[B]
foreach{arr.append(_)}
arr
}
def toArray[B >: A : ClassTag]: Array[B] = toBuffer.toArray
def toSeq: Seq[A] = toVector
def toList = toBuffer.toList
def toSet[B >: A] = toBuffer[B].toSet
def toVector = toBuffer.toVector
def mkString(start: String, sep: String, end: String): String = {
val sb = new StringBuilder
sb.append(start)
var first = true
foreach { x =>
if (!first) {
sb.append(sep)
}
sb.append(x)
first = false
}
sb.append(end)
sb.toString()
}
def mkString(sep: String): String = mkString("", sep, "")
def mkString: String = mkString("")
def sum[B >: A](implicit num: Numeric[B]): B = foldLeft(num.zero)(num.plus)
def product[B >: A](implicit num: Numeric[B]): B = foldLeft(num.one)(num.times)
def min[B >: A](implicit cmp: Ordering[B]): A = {
reduceLeft((x, y) => if (cmp.lteq(x, y)) x else y)
}
def max[B >: A](implicit cmp: Ordering[B]): A = {
reduceLeft((x, y) => if (cmp.gteq(x, y)) x else y)
}
def maxBy[B](f: A => B)(implicit cmp: Ordering[B]): A = {
var maxF: B = null.asInstanceOf[B]
var maxElem: A = null.asInstanceOf[A]
var first = true
for (elem <- this) {
val fx = f(elem)
if (first || cmp.gt(fx, maxF)) {
maxElem = elem
maxF = fx
first = false
}
}
maxElem
}
def minBy[B](f: A => B)(implicit cmp: Ordering[B]): A = {
var minF: B = null.asInstanceOf[B]
var minElem: A = null.asInstanceOf[A]
var first = true
for (elem <- this) {
val fx = f(elem)
if (first || cmp.lt(fx, minF)) {
minElem = elem
minF = fx
first = false
}
}
minElem
}
}
object Generator{
sealed trait Action
object End extends Action
object Continue extends Action
def apply[T](xs: T*) = from(xs)
implicit def from[M[_], T](t: M[T])(implicit convert: (M[T] => TraversableOnce[T])): Generator[T] = new Generator[T]{
def generate(f: T => Generator.Action) = {
var last: Generator.Action = Generator.Continue
val iterator = convert(t).toIterator
while (last == Generator.Continue && iterator.hasNext) {
last = f(iterator.next())
}
last
}
override def toString = s"Generator($t)"
}
def selfClosing[T](makeIterator: => (Iterator[T], () => Unit)): Generator[T] = new SelfClosing(makeIterator)
private class SelfClosing[+T](makeIterator: => (Iterator[T], () => Unit)) extends Generator[T]{
def generate(f: T => Generator.Action) = {
var last: Generator.Action = Generator.Continue
val (iterator, onComplete) = makeIterator
try {
while (last == Generator.Continue && iterator.hasNext) {
last = f(iterator.next())
}
last
} finally{
onComplete()
}
}
override def toString = s"Gen.SelfClosing(...)"
}
private class Concat[+T](inner: Generator[T], other: Generator[T]) extends Generator[T] {
def generate(f: T => Generator.Action) = {
val res1 = inner.generate(f)
if (res1 == Generator.End) Generator.End
else other.generate(f)
}
override def toString = s"$inner ++ $other"
}
private class ZipWithIndexed[+T](inner: Generator[T]) extends Generator[(T, Int)] {
def generate(f: ((T, Int)) => Generator.Action) = {
var i = 0
inner.generate{t =>
val res = f(t, i)
i += 1
res
}
}
override def toString = s"$inner.zipWithIndex"
}
private class Zipped[+T, V](inner: Generator[T], other: Iterable[V]) extends Generator[(T, V)] {
def generate(f: ((T, V)) => Generator.Action) = {
val iter = other.iterator
inner.generate{t =>
if (!iter.hasNext) Generator.End
else f(t, iter.next())
}
}
override def toString = s"$inner.zip($other)"
}
private class Filtered[+T](inner: Generator[T], pred: T => Boolean) extends Generator[T]{
def generate(f: T => Generator.Action) = {
inner.generate{t => if (pred(t)) f(t) else Generator.Continue}
}
override def toString = s"$inner.filter($pred)"
}
private class Mapped[+T, V](inner: Generator[V], func: V => T) extends Generator[T]{
def generate(f: T => Generator.Action) = {
inner.generate{t => f(func(t))}
}
override def toString = s"$inner.map($func)"
}
private class FlatMapped[+T, V](inner: Generator[V], func: V => Generator[T]) extends Generator[T]{
def generate(f: T => Generator.Action) = {
inner.generate{ outerT =>
func(outerT).generate{ innerT =>
f(innerT)
}
}
}
override def toString = s"$inner.map($func)"
}
private class Sliced[+T](inner: Generator[T], start: Int, end: Int) extends Generator[T]{
def generate(f: T => Generator.Action) = {
var count = 0
inner.generate{t =>
if (count < start){
count += 1
Generator.Continue
}else if (count < end){
count += 1
if (count != end) f(t)
else {
// If we've reached the limit of our slice, evaluate `f` once but
// then `End` immediately. This saves us having to consume one more
// item from `inner`, only to ignore/discard it when we realize
// we're done.
f(t)
Generator.End
}
} else Generator.End
}
}
override def toString = s"$inner.slice($start, $end)"
}
private class TakeWhile[+T](inner: Generator[T], pred: T => Boolean) extends Generator[T]{
def generate(f: T => Generator.Action) = {
inner.generate{t =>
if (pred(t)) {
f(t)
} else {
Generator.End
}
}
}
override def toString = s"$inner.takeWhile($pred)"
}
private class DropWhile[+T](inner: Generator[T], pred: T => Boolean) extends Generator[T]{
def generate(f: T => Generator.Action) = {
var started = false
inner.generate{t =>
if (!started) {
if (pred(t)) Generator.Continue
else {
started = true
f(t)
}
}else f(t)
}
}
override def toString = s"$inner.dropWhile($pred)"
}
}