
com.microsoft.azure.synapse.ml.vw.featurizer.BooleanFeaturizer.scala Maven / Gradle / Ivy
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.
package com.microsoft.azure.synapse.ml.vw.featurizer
import org.apache.spark.sql.Row
import org.vowpalwabbit.spark.VowpalWabbitMurmur
import scala.collection.mutable
/**
* Featurize boolean value into native VW structure. (True = hash(feature name):1, False ignored).
* @param fieldIdx input field index.
* @param columnName used as feature name.
* @param namespaceHash pre-hashed namespace.
* @param mask bit mask applied to final hash.
*/
private[ml] class BooleanFeaturizer(override val fieldIdx: Int,
override val columnName: String,
namespaceHash: Int, mask: Int)
extends Featurizer(fieldIdx) with ElementFeaturizer[Boolean] {
/**
* Pre-hashed feature index.
*/
val featureIdx: Int = mask & VowpalWabbitMurmur.hash(columnName, namespaceHash)
/**
* Featurize a single row.
* @param row input row.
* @param indices output indices.
* @param values output values.
* @note this interface isn't very Scala idiomatic, but it avoids lots of allocation.
* Also due to SparseVector limitations we don't support 64bit indices (e.g. indices are signed 32bit ints)
*/
override def featurize(row: Row,
indices: mutable.ArrayBuilder[Int],
values: mutable.ArrayBuilder[Double]): Unit = {
featurize(0, row.getBoolean(fieldIdx), indices, values)
}
def featurize(idx: Int,
value: Boolean,
indices: mutable.ArrayBuilder[Int],
values: mutable.ArrayBuilder[Double]): Unit = {
if (value) {
indices += featureIdx + idx
values += 1.0
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy