
com.microsoft.azure.synapse.ml.vw.featurizer.StringFeaturizer.scala Maven / Gradle / Ivy
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.
package com.microsoft.azure.synapse.ml.vw.featurizer
import org.apache.spark.sql.Row
import scala.collection.mutable
/**
* Featurize string into native VW structure. (hash(column name + value):1)
* @param fieldIdx input field index.
* @param columnName used as feature name prefix.
* @param namespaceHash pre-hashed namespace.
* @param mask bit mask applied to final hash.
*/
private[ml] class StringFeaturizer(override val fieldIdx: Int,
override val columnName: String,
val namespaceHash: Int,
val mask: Int)
extends Featurizer(fieldIdx) with ElementFeaturizer[String] {
/**
* Featurize a single row.
* @param row input row.
* @param indices output indices.
* @param values output values.
* @note this interface isn't very Scala-esce, but it avoids lots of allocation.
* Also due to SparseVector limitations we don't support 64bit indices (e.g. indices are signed 32bit ints)
*/
override def featurize(row: Row, indices: mutable.ArrayBuilder[Int], values: mutable.ArrayBuilder[Double]): Unit = {
featurize(0, row.getString(fieldIdx), indices, values)
()
}
def featurize(idx: Int,
value: String,
indices: mutable.ArrayBuilder[Int],
values: mutable.ArrayBuilder[Double]): Unit = {
if (value != null && !value.isEmpty) {
indices += mask & hasher.hash(value, namespaceHash)
values += 1.0
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy