
com.microsoft.azure.synapse.ml.vw.VowpalWabbitBase.scala Maven / Gradle / Ivy
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.
package com.microsoft.azure.synapse.ml.vw
import com.microsoft.azure.synapse.ml.codegen.Wrappable
import com.microsoft.azure.synapse.ml.core.env.StreamUtilities
import com.microsoft.azure.synapse.ml.core.utils.{ClusterUtil, ParamsStringBuilder}
import com.microsoft.azure.synapse.ml.param.ByteArrayParam
import org.apache.spark.internal.Logging
import org.apache.spark.ml.ComplexParamsWritable
import org.apache.spark.ml.param.{BooleanParam, DoubleParam, IntParam, Param, Params, StringArrayParam}
import org.apache.spark.sql.{DataFrame, Dataset}
import org.vowpalwabbit.spark.VowpalWabbitNative
import java.time.Instant
import java.time.temporal.ChronoUnit
import scala.math.min
case class NamespaceInfo(hash: Int, featureGroup: Char, colIdx: Int)
/**
* VW support multiple input columns which are mapped to namespaces.
* Note: when one wants to create quadratic features within VW you'd specify additionalFeatures.
* Each feature column is treated as one namespace. Using -q 'uc' for columns 'user' and 'content'
* you'd get all quadratics for features in user/content
* (the first letter is called feature group and VW users are used to it... before somebody starts complaining ;)
*/
trait HasAdditionalFeatures extends Params {
val additionalFeatures = new StringArrayParam(this, "additionalFeatures", "Additional feature columns")
def getAdditionalFeatures: Array[String] = $(additionalFeatures)
def setAdditionalFeatures(value: Array[String]): this.type = set(additionalFeatures, value)
}
trait VowpalWabbitBase
extends Wrappable
with ComplexParamsWritable
with Logging {
override protected lazy val pyInternalWrapper = true
// can we switch to use meta programming (https://docs.scala-lang.org/overviews/macros/paradise.html)
// to generate all the parameters?
// (update: this is a removed feature as of 3.0, so would have to use newer macro mechanisms)
val passThroughArgs = new Param[String](this, "passThroughArgs", "VW command line arguments passed")
setDefault(passThroughArgs -> "")
def getPassThroughArgs: String = $(passThroughArgs)
def setPassThroughArgs(value: String): this.type = set(passThroughArgs, value)
@deprecated("Please use 'getPassThroughArgs'.", since="0.9.6")
def getArgs: String = $(passThroughArgs)
@deprecated("Please use 'setPassThroughArgs'.", since="0.9.6")
def setArgs(value: String): this.type = set(passThroughArgs, value)
// to support Grid search we need to replicate the parameters here...
val numPasses = new IntParam(this, "numPasses", "Number of passes over the data")
setDefault(numPasses -> 1)
def getNumPasses: Int = $(numPasses)
def setNumPasses(value: Int): this.type = set(numPasses, value)
// Note on parameters: default values are set in the C++ codebase. To avoid replication
// and potentially introduce conflicting default values, the Scala exposed parameters
// are only passed to the native side if they're set.
val learningRate = new DoubleParam(this, "learningRate", "Learning rate")
def getLearningRate: Double = $(learningRate)
def setLearningRate(value: Double): this.type = set(learningRate, value)
val powerT = new DoubleParam(this, "powerT", "t power value")
def getPowerT: Double = $(powerT)
def setPowerT(value: Double): this.type = set(powerT, value)
val l1 = new DoubleParam(this, "l1", "l_1 lambda")
def getL1: Double = $(l1)
def setL1(value: Double): this.type = set(l1, value)
val l2 = new DoubleParam(this, "l2", "l_2 lambda")
def getL2: Double = $(l2)
def setL2(value: Double): this.type = set(l2, value)
val interactions = new StringArrayParam(this, "interactions", "Interaction terms as specified by -q")
def getInteractions: Array[String] = $(interactions)
def setInteractions(value: Array[String]): this.type = set(interactions, value)
val ignoreNamespaces = new Param[String](this, "ignoreNamespaces", "Namespaces to be ignored (first letter only)")
def getIgnoreNamespaces: String = $(ignoreNamespaces)
def setIgnoreNamespaces(value: String): this.type = set(ignoreNamespaces, value)
val initialModel = new ByteArrayParam(this, "initialModel", "Initial model to start from")
def getInitialModel: Array[Byte] = $(initialModel)
def setInitialModel(value: Array[Byte]): this.type = set(initialModel, value)
val useBarrierExecutionMode = new BooleanParam(this, "useBarrierExecutionMode",
"Use barrier execution mode, on by default.")
setDefault(useBarrierExecutionMode -> true)
def getUseBarrierExecutionMode: Boolean = $(useBarrierExecutionMode)
def setUseBarrierExecutionMode(value: Boolean): this.type = set(useBarrierExecutionMode, value)
val hashSeed = new IntParam(this, "hashSeed", "Seed used for hashing")
setDefault(hashSeed -> 0)
def getHashSeed: Int = $(hashSeed)
def setHashSeed(value: Int): this.type = set(hashSeed, value)
val numBits = new IntParam(this, "numBits", "Number of bits used")
setDefault(numBits -> 18)
def getNumBits: Int = $(numBits)
def setNumBits(value: Int): this.type = set(numBits, value)
val numSyncsPerPass = new IntParam(
this,
"numSyncsPerPass",
"Number of times weights should be synchronized within each pass. 0 disables inter-pass synchronization.")
setDefault(numSyncsPerPass -> 0)
def getNumSyncsPerPass: Int = $(numSyncsPerPass)
def setNumSyncsPerPass(value: Int): this.type = set(numSyncsPerPass, value)
//endregion
// get list of columns needed as input
protected def getInputColumns: Seq[String]
protected def prepareDataSet(dataset: Dataset[_]): DataFrame = {
// follow LightGBM pattern
val numTasksPerExec = ClusterUtil.getNumTasksPerExecutor(dataset.sparkSession, log)
val numExecutorTasks = ClusterUtil.getNumExecutorTasks(dataset.sparkSession, numTasksPerExec, log)
val numTasks = min(numExecutorTasks, dataset.rdd.getNumPartitions)
// Need to pass all columns as sub-cl
val dfSubset = dataset.toDF()
// Reduce number of partitions to number of executor cores
if (dataset.rdd.getNumPartitions > numTasks) {
if (getUseBarrierExecutionMode) { // see [SPARK-24820][SPARK-24821]
dfSubset.repartition(numTasks)
}
else {
dfSubset.coalesce(numTasks)
}
} else
dfSubset
}
/**
* wrap the block w/ a VW instance that will be closed when the block is done.
*/
protected def executeWithVowpalWabbit[T](block: VowpalWabbitNative => T): T = {
val localInitialModel = if (isDefined(initialModel)) Some(getInitialModel) else None
val args = buildCommandLineArguments(getCommandLineArgs.result)
val vw =
if (localInitialModel.isEmpty) new VowpalWabbitNative(args)
else new VowpalWabbitNative(args, localInitialModel.get)
StreamUtilities.using(vw) { block(_) }.get
}
/**
* initialize sync schedule. this might trigger computation (e.g. number of rows per partition)
*
* @param df the input dataframe used to compute the schedules' steps
* @return the synchronization schedule
* @note this is supposed to be executed on the driver
*/
protected def interPassSyncSchedule(df: DataFrame): VowpalWabbitSyncSchedule = {
if (getNumSyncsPerPass == 0)
VowpalWabbitSyncSchedule.Disabled
else
new VowpalWabbitSyncScheduleSplits(df, getNumSyncsPerPass)
}
protected def buildCommandLineArguments(vwArgs: String, contextArgs: => String = ""): String = {
val args = new ParamsStringBuilder("--", " ")
.append(vwArgs)
.append(contextArgs)
.appendParamFlagIfNotThere("no_stdin") // have to pass to get multi-pass to work
// need to keep reference around to prevent GC and subsequent file delete
if (getNumPasses > 1) {
val cacheFile = java.io.File.createTempFile("vowpalwabbit", ".cache")
cacheFile.deleteOnExit()
args.append("-k")
.appendParamValueIfNotThere("cache_file", Option(cacheFile.getAbsolutePath))
.appendParamValueIfNotThere("passes", Option(getNumPasses))
}
val result = args.result()
log.warn(s"VowpalWabbit args: $result)")
result
}
protected def getCommandLineArgs: ParamsStringBuilder = {
new ParamsStringBuilder(this, prefix = "--", delimiter = " ")
.append(getPassThroughArgs) // first so that pass through args override explicit setters (TODO reconsider)
.appendParamValueIfNotThere("hash_seed", "hash_seed", hashSeed)
.appendParamValueIfNotThere("b", "bit_precision", numBits)
.appendParamValueIfNotThere("l", "learning_rate", learningRate)
.appendParamValueIfNotThere("power_t", "power_t", powerT)
.appendParamValueIfNotThere("l1", "l1", l1)
.appendParamValueIfNotThere("l2", "l2", l2)
.appendParamValueIfNotThere("ignore", "ignore", ignoreNamespaces)
.appendRepeatableParamIfNotThere("q", "quadratic", interactions)
.appendSubclassSpecificParams()
}
/** Override to add parameters specific to subclass.
*/
protected def appendExtraParams(sb: ParamsStringBuilder): ParamsStringBuilder = {
sb
}
implicit class SpecificParamAppender(sb: ParamsStringBuilder) {
def appendSubclassSpecificParams(): ParamsStringBuilder = {
appendExtraParams(sb)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy