All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.microsoft.azure.synapse.ml.vw.VowpalWabbitGenericProgressive.scala Maven / Gradle / Ivy

There is a newer version: 1.0.9
Show newest version
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.

package com.microsoft.azure.synapse.ml.vw

import com.microsoft.azure.synapse.ml.core.contracts.HasInputCol
import com.microsoft.azure.synapse.ml.logging.{FeatureNames, SynapseMLLogging}
import org.apache.spark.ml.ComplexParamsReadable
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{DataFrame, Dataset, Row}
import org.apache.spark.sql.types.StructType
import org.vowpalwabbit.spark.VowpalWabbitNative

/**
  * VW-style string based input implementation of online learning with progressive (1-step ahead) output.
  */
class VowpalWabbitGenericProgressive(override val uid: String)
  extends VowpalWabbitBaseProgressive
    with HasInputCol
    with SynapseMLLogging {
  logClass(FeatureNames.VowpalWabbit)

  def this() = this(Identifiable.randomUID("VowpalWabbitGenericProgressive"))

  setDefault(inputCol -> "input")

  override def copy(extra: ParamMap): this.type = defaultCopy(extra)

  override protected def getInputColumns: Seq[String] = Seq(getInputCol)

  // it's a bit annoying that we have to start/stop VW to understand the schema
  lazy val (additionalOutputSchema, predictionFunc) = {
    executeWithVowpalWabbit { vw => {
      val schema = VowpalWabbitPrediction.getSchema(vw)
      val func = VowpalWabbitPrediction.getPredictionFunc(vw)

      (schema, func)
    } }
  }

  override def getAdditionalOutputSchema: StructType = additionalOutputSchema

  var featureIdx: Int = 0

  override def trainFromRow(vw: VowpalWabbitNative, row: Row): Seq[Any] = {
    // fetch data
    val features = row.getString(featureIdx)

    // learn
    val pred = vw.learnFromString(features)

    // convert prediction to seq
    predictionFunc(pred)
  }

  override def transform(dataset: Dataset[_]): DataFrame = {
    // ugh, would have to pass the context all the way through to trainFromRow
    featureIdx = dataset.schema.fieldIndex(getInputCol)

    super.transform(dataset)
  }
}

object VowpalWabbitGenericProgressive extends ComplexParamsReadable[VowpalWabbitGenericProgressive] with Serializable





© 2015 - 2025 Weber Informatics LLC | Privacy Policy