
com.microsoft.azure.synapse.ml.vw.VowpalWabbitClassifier.scala Maven / Gradle / Ivy
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.
package com.microsoft.azure.synapse.ml.vw
import com.microsoft.azure.synapse.ml.codegen.Wrappable
import com.microsoft.azure.synapse.ml.core.schema.DatasetExtensions._
import com.microsoft.azure.synapse.ml.logging.{FeatureNames, SynapseMLLogging}
import org.apache.spark.ml.classification.{ProbabilisticClassificationModel, ProbabilisticClassifier}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared.HasWeightCol
import org.apache.spark.ml.util._
import org.apache.spark.ml.{ComplexParamsReadable, ComplexParamsWritable}
import org.apache.spark.sql._
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types.{DoubleType, StringType, StructType}
import org.vowpalwabbit.spark.VowpalWabbitExample
import scala.math.exp
/**
* VowpalWabbit exposed as SparkML classifier.
*/
class VowpalWabbitClassifier(override val uid: String)
extends ProbabilisticClassifier[Row, VowpalWabbitClassifier, VowpalWabbitClassificationModel]
with VowpalWabbitBaseSpark
with ComplexParamsWritable
with SynapseMLLogging {
logClass(FeatureNames.VowpalWabbit)
override protected lazy val pyInternalWrapper = true
def this() = this(Identifiable.randomUID("VowpalWabbitClassifier"))
// to support Grid search we need to replicate the parameters here...
val labelConversion = new BooleanParam(this, "labelConversion",
"Convert 0/1 Spark ML style labels to -1/1 VW style labels. Defaults to false.")
setDefault(labelConversion -> false)
def getLabelConversion: Boolean = $(labelConversion)
def setLabelConversion(value: Boolean): this.type = set(labelConversion, value)
val numClasses = new IntParam(this, "numClasses",
"Number of classes. Defaults to binary. Needs to match oaa/csoaa/multilabel_oaa/...")
setDefault(numClasses -> 2)
def getNumClasses: Int = $(numClasses)
def setNumClasses(value: Int): this.type = set(numClasses, value)
override protected def createLabelSetter(schema: StructType): (Row, VowpalWabbitExample) => Unit = {
if (getNumClasses == 2)
super.createLabelSetter(schema)
else {
val labelColIdx = schema.fieldIndex(getLabelCol)
val weightGetter = getWeightGetter(schema)
// for Predictors the label is always going to be a Double
(row: Row, ex: VowpalWabbitExample) =>
ex.setMulticlassLabel(weightGetter(row), row.getDouble(labelColIdx).toInt)
}
}
override protected def train(dataset: Dataset[_]): VowpalWabbitClassificationModel = {
logFit({
val model = new VowpalWabbitClassificationModel(uid)
.setFeaturesCol(getFeaturesCol)
.setAdditionalFeatures(getAdditionalFeatures)
.setPredictionCol(getPredictionCol)
.setProbabilityCol(getProbabilityCol)
.setRawPredictionCol(getRawPredictionCol)
.setNumClassesModel(getNumClasses)
val finalDataset = if (!getLabelConversion)
dataset.toDF
else {
val inputLabelCol = dataset.withDerivativeCol("label")
dataset
.withColumnRenamed(getLabelCol, inputLabelCol)
.withColumn(getLabelCol, col(inputLabelCol) * 2 - 1)
.toDF
}
trainInternal(finalDataset, model)
}, dataset.columns.length)
}
override def copy(extra: ParamMap): this.type = defaultCopy(extra)
}
object VowpalWabbitClassifier extends ComplexParamsReadable[VowpalWabbitClassifier]
class VowpalWabbitClassificationModel(override val uid: String)
extends ProbabilisticClassificationModel[Row, VowpalWabbitClassificationModel]
with VowpalWabbitBaseModelSpark
with ComplexParamsWritable with Wrappable with SynapseMLLogging {
logClass(FeatureNames.VowpalWabbit)
def this() = this(Identifiable.randomUID("VowpalWabbitClassificationModel"))
override protected lazy val pyInternalWrapper = true
// need to name differently from numClasses
val numClassesModel = new IntParam(this, "numClassesModel",
"Number of classes.")
def getNumClassesModel: Int = $(numClassesModel)
def setNumClassesModel(value: Int): this.type = set(numClassesModel, value)
def numClasses: Int = getNumClassesModel
override def transform(dataset: Dataset[_]): DataFrame = {
logTransform[DataFrame]({
val df = transformImplInternal(dataset)
if (getNumClassesModel == 2) {
// which mode one wants to use depends a bit on how this should be deployed
// 1. if you stay in spark w/o link=logistic is probably more convenient as it also returns the raw prediction
// 2. if you want to export the model *and* get probabilities at scoring term w/ link=logistic is preferable
// convert raw prediction to probability (if needed)
val probabilityUdf = if (vwArgs.getArgs.contains("--link logistic"))
udf { (pred: Double) => Vectors.dense(Array(1 - pred, pred)) }
else
udf { (pred: Double) => {
val prob = 1.0 / (1.0 + exp(-pred))
Vectors.dense(Array(1 - prob, prob))
}}
val probability2predictionUdf = udf(probability2prediction _)
df
.withColumn($(rawPredictionCol),
col(vowpalWabbitPredictionCol).getField("prediction").cast(DoubleType))
.withColumn($(probabilityCol), probabilityUdf(col($(rawPredictionCol))))
// convert probability to prediction
.withColumn($(predictionCol), probability2predictionUdf(col($(probabilityCol))))
}
else {
val outputsProbs = vw.getOutputPredictionType.equals("prediction_type_t::scalars")
if (outputsProbs) {
// find prediction based on highest prob
val argMaxUDF = udf { (probs: Vector) => probs.argmax.toDouble }
val arrayToVector = udf { (probs: Seq[Float]) => Vectors.dense(probs.toArray.map(_.toDouble)) }
df
.withColumn($(rawPredictionCol), col(vowpalWabbitPredictionCol).getField("predictions"))
.withColumn($(probabilityCol), arrayToVector(col($(rawPredictionCol))))
.withColumn($(predictionCol), argMaxUDF(col($(probabilityCol))))
}
else
df
.withColumn($(rawPredictionCol),
col(vowpalWabbitPredictionCol).getField("prediction").cast(DoubleType))
.withColumn($(predictionCol), col($(rawPredictionCol)))
}
}, dataset.columns.length)
}
override def copy(extra: ParamMap): this.type = defaultCopy(extra)
override protected def raw2probabilityInPlace(rawPrediction: Vector): Vector =
{
throw new NotImplementedError("Not implemented")
}
override def predictRaw(features: Row): Vector =
{
throw new NotImplementedError("Not implemented")
}
}
object VowpalWabbitClassificationModel extends ComplexParamsReadable[VowpalWabbitClassificationModel]
© 2015 - 2025 Weber Informatics LLC | Privacy Policy