![JAR search and dependency download from the Maven repository](/logo.png)
com.microsoft.azure.synapse.ml.vw.featurizer.SeqFeaturizer.scala Maven / Gradle / Ivy
// Copyright (C) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License. See LICENSE in project root for information.
package com.microsoft.azure.synapse.ml.vw.featurizer
import org.apache.spark.sql.Row
import scala.collection.mutable
/**
* Featurize array of strings into native VW structure. (hash(column name + k):1)
* @param fieldIdx input field index.
* @param columnName used as feature name prefix.
*/
private[ml] class SeqFeaturizer[E](override val fieldIdx: Int,
override val columnName: String,
val featurizer: Featurizer)
extends Featurizer(fieldIdx) with ElementFeaturizer[Seq[E]] {
private val elementFeaturizer = featurizer.asInstanceOf[ElementFeaturizer[E]]
/**
* Featurize a single row.
* @param row input row.
* @param indices output indices.
* @param values output values.
* @note this interface isn't very Scala-esce, but it avoids lots of allocation.
* Also due to SparseVector limitations we don't support 64bit indices (e.g. indices are signed 32bit ints)
*/
override def featurize(row: Row, indices: mutable.ArrayBuilder[Int], values: mutable.ArrayBuilder[Double]): Unit = {
// loop over sequence and pass the offset
featurize(0, row.getSeq[E](fieldIdx), indices, values)
}
def featurize(idx: Int,
value: Seq[E],
indices: mutable.ArrayBuilder[Int],
values: mutable.ArrayBuilder[Double]): Unit = {
for((v, i) <- value.view.zipWithIndex)
elementFeaturizer.featurize(i, v, indices, values)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy