Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.mycila.inject.internal.guava.collect.CustomConcurrentHashMap Maven / Gradle / Ivy
/*
* Copyright (C) 2009 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Equivalence;
import com.google.common.base.Equivalences;
import com.google.common.base.FinalizableReferenceQueue;
import com.google.common.base.FinalizableSoftReference;
import com.google.common.base.FinalizableWeakReference;
import com.google.common.base.Ticker;
import com.google.common.collect.MapMaker.NullListener;
import com.google.common.primitives.Ints;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractQueue;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.Executor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.locks.ReentrantLock;
import javax.annotation.Nullable;
import javax.annotation.concurrent.GuardedBy;
/**
* The concurrent hash map implementation built by {@link MapMaker}.
*
* This implementation is heavily derived from revision 1.96 of
* ConcurrentHashMap.java .
*
* @author Bob Lee
* @author Doug Lea ({@code ConcurrentHashMap})
*/
class CustomConcurrentHashMap extends AbstractMap
implements ConcurrentMap, Serializable {
/*
* The basic strategy is to subdivide the table among Segments, each of which
* itself is a concurrently readable hash table. The map supports
* non-blocking reads and concurrent writes across different segments.
*
* If a maximum size is specified, a best-effort bounding is performed per
* segment, using a page-replacement algorithm to determine which entries to
* evict when the capacity has been exceeded.
*
* The page replacement algorithm's data structures are kept casually
* consistent with the map. The ordering of writes to a segment is
* sequentially consistent. An update to the map and recording of reads may
* not be immediately reflected on the algorithm's data structures. These
* structures are guarded by a lock and operations are applied in batches to
* avoid lock contention. The penalty of applying the batches is spread across
* threads so that the amortized cost is slightly higher than performing just
* the operation without enforcing the capacity constraint.
*
* This implementation uses a per-segment queue to record a memento of the
* additions, removals, and accesses that were performed on the map. The queue
* is drained on writes and when it exceeds its capacity threshold.
*
* The Least Recently Used page replacement algorithm was chosen due to its
* simplicity, high hit rate, and ability to be implemented with O(1) time
* complexity. The initial LRU implementation operates per-segment rather
* than globally for increased implementation simplicity. We expect the cache
* hit rate to be similar to that of a global LRU algorithm.
*/
/* ---------------- Constants -------------- */
/**
* The maximum capacity, used if a higher value is implicitly specified by
* either of the constructors with arguments. MUST be a power of two <=
* 1<<30 to ensure that entries are indexable using ints.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The maximum number of segments to allow; used to bound constructor
* arguments.
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
/**
* Number of cache access operations that can be buffered per segment before
* the cache's recency ordering information is updated. This is used to avoid
* lock contention by recording a memento of reads and delaying a lock
* acquisition until the threshold is crossed or a mutation occurs.
*
* This must be a (2^n)-1 as it is used as a mask.
*/
static final int DRAIN_THRESHOLD = 0x3F;
/**
* Maximum number of entries to be cleaned up in a single cleanup run.
* TODO(user): empirically optimize this
*/
static final int CLEANUP_MAX = 16;
/* ---------------- Fields -------------- */
/**
* Mask value for indexing into segments. The upper bits of a key's hash
* code are used to choose the segment.
*/
final transient int segmentMask;
/**
* Shift value for indexing within segments. Helps prevent entries that
* end up in the same segment from also ending up in the same bucket.
*/
final transient int segmentShift;
/** The segments, each of which is a specialized hash table. */
final transient Segment[] segments;
/** The concurrency level. */
final int concurrencyLevel;
/** Strategy for comparing keys. */
final Equivalence keyEquivalence;
/** Strategy for comparing values. */
final Equivalence valueEquivalence;
/** Strategy for referencing keys. */
final Strength keyStrength;
/** Strategy for referencing values. */
final Strength valueStrength;
/**
* The maximum size of this map. MapMaker.UNSET_INT if there is no
* maximum.
*/
final int maximumSize;
/**
* How long after the last access to an entry the map will retain that
* entry.
*/
final long expireAfterAccessNanos;
/**
* How long after the last write to an entry the map will retain that
* entry.
*/
final long expireAfterWriteNanos;
/** Entries waiting to be consumed by the eviction listener. */
final Queue> evictionNotificationQueue;
/**
* A listener that is invoked when an entry is removed due to expiration or
* garbage collection of soft/weak entries.
*/
final MapEvictionListener super K, ? super V> evictionListener;
/** Factory used to create new entries. */
final transient EntryFactory entryFactory;
/** Performs map housekeeping operations. */
final Executor cleanupExecutor;
/** Measures time in a testable way. */
final Ticker ticker;
/**
* Creates a new, empty map with the specified strategy, initial capacity
* and concurrency level.
*/
CustomConcurrentHashMap(MapMaker builder) {
concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS);
keyStrength = builder.getKeyStrength();
valueStrength = builder.getValueStrength();
keyEquivalence = builder.getKeyEquivalence();
valueEquivalence = builder.getValueEquivalence();
maximumSize = builder.maximumSize;
expireAfterAccessNanos = builder.getExpireAfterAccessNanos();
expireAfterWriteNanos = builder.getExpireAfterWriteNanos();
entryFactory =
EntryFactory.getFactory(keyStrength, expires(), evictsBySize());
cleanupExecutor = builder.getCleanupExecutor();
ticker = builder.getTicker();
evictionListener = builder.getEvictionListener();
evictionNotificationQueue = (evictionListener == NullListener.INSTANCE)
? CustomConcurrentHashMap.>discardingQueue()
: new ConcurrentLinkedQueue>();
int initialCapacity =
Math.min(builder.getInitialCapacity(), MAXIMUM_CAPACITY);
if (evictsBySize()) {
initialCapacity = Math.min(initialCapacity, maximumSize);
}
// Find power-of-two sizes best matching arguments. Constraints:
// (segmentCount <= maximumSize)
// && (concurrencyLevel > maximumSize || segmentCount > concurrencyLevel)
int segmentShift = 0;
int segmentCount = 1;
while (segmentCount < concurrencyLevel
&& (!evictsBySize() || segmentCount * 2 <= maximumSize)) {
++segmentShift;
segmentCount <<= 1;
}
this.segmentShift = 32 - segmentShift;
segmentMask = segmentCount - 1;
this.segments = newSegmentArray(segmentCount);
int segmentCapacity = initialCapacity / segmentCount;
if (segmentCapacity * segmentCount < initialCapacity) {
++segmentCapacity;
}
int segmentSize = 1;
while (segmentSize < segmentCapacity) {
segmentSize <<= 1;
}
if (evictsBySize()) {
// Ensure sum of segment max sizes = overall max size
int maximumSegmentSize = maximumSize / segmentCount + 1;
int remainder = maximumSize % segmentCount;
for (int i = 0; i < this.segments.length; ++i) {
if (i == remainder) {
maximumSegmentSize--;
}
this.segments[i] = createSegment(segmentSize, maximumSegmentSize);
}
} else {
for (int i = 0; i < this.segments.length; ++i) {
this.segments[i] = createSegment(segmentSize,
MapMaker.UNSET_INT);
}
}
}
boolean evictsBySize() {
return maximumSize != MapMaker.UNSET_INT;
}
boolean expires() {
return expiresAfterWrite() || expiresAfterAccess();
}
boolean expiresAfterWrite() {
return expireAfterWriteNanos > 0;
}
boolean expiresAfterAccess() {
return expireAfterAccessNanos > 0;
}
boolean isInlineCleanup() {
return cleanupExecutor == MapMaker.DEFAULT_CLEANUP_EXECUTOR;
}
enum Strength {
/*
* TODO(kevinb): If we strongly reference the value and aren't computing, we
* needn't wrap the value. This could save ~8 bytes per entry.
*/
STRONG {
@Override ValueReference referenceValue(
ReferenceEntry entry, V value) {
return new StrongValueReference(value);
}
@Override Equivalence defaultEquivalence() {
return Equivalences.equals();
}
},
SOFT {
@Override ValueReference referenceValue(
ReferenceEntry entry, V value) {
return new SoftValueReference(value, entry);
}
@Override Equivalence defaultEquivalence() {
return Equivalences.identity();
}
},
WEAK {
@Override ValueReference referenceValue(
ReferenceEntry entry, V value) {
return new WeakValueReference(value, entry);
}
@Override Equivalence defaultEquivalence() {
return Equivalences.identity();
}
};
/**
* Creates a reference for the given value according to this value
* strength.
*/
abstract ValueReference referenceValue(
ReferenceEntry entry, V value);
/**
* Returns the default equivalence strategy used to compare and hash
* keys or values referenced at this strength. This strategy will be used
* unless the user explicitly specifies an alternate strategy.
*/
abstract Equivalence defaultEquivalence();
}
/**
* Creates new entries.
*/
enum EntryFactory {
STRONG {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new StrongEntry(map, key, hash, next);
}
},
STRONG_EXPIRABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new StrongExpirableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
return newEntry;
}
},
STRONG_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new StrongEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyEvictableEntry(original, newEntry);
return newEntry;
}
},
STRONG_EXPIRABLE_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new StrongExpirableEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
copyEvictableEntry(original, newEntry);
return newEntry;
}
},
SOFT {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new SoftEntry(map, key, hash, next);
}
},
SOFT_EXPIRABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new SoftExpirableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
return newEntry;
}
},
SOFT_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new SoftEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyEvictableEntry(original, newEntry);
return newEntry;
}
},
SOFT_EXPIRABLE_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new SoftExpirableEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
copyEvictableEntry(original, newEntry);
return newEntry;
}
},
WEAK {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new WeakEntry(map, key, hash, next);
}
},
WEAK_EXPIRABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new WeakExpirableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
return newEntry;
}
},
WEAK_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new WeakEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyEvictableEntry(original, newEntry);
return newEntry;
}
},
WEAK_EXPIRABLE_EVICTABLE {
@Override ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
return new WeakExpirableEvictableEntry(map, key, hash, next);
}
@Override ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
ReferenceEntry newEntry = super.copyEntry(map, original, newNext);
copyExpirableEntry(original, newEntry);
copyEvictableEntry(original, newEntry);
return newEntry;
}
};
/**
* Masks used to compute indices in the following table.
*/
static final int EXPIRABLE_MASK = 1;
static final int EVICTABLE_MASK = 2;
/**
* Look-up table for factories. First dimension is the reference type.
* The second dimension is the result of OR-ing the feature masks.
*/
static final EntryFactory[][] factories = {
{ STRONG, STRONG_EXPIRABLE, STRONG_EVICTABLE, STRONG_EXPIRABLE_EVICTABLE },
{ SOFT, SOFT_EXPIRABLE, SOFT_EVICTABLE, SOFT_EXPIRABLE_EVICTABLE },
{ WEAK, WEAK_EXPIRABLE, WEAK_EVICTABLE, WEAK_EXPIRABLE_EVICTABLE }
};
static EntryFactory getFactory(Strength keyStrength,
boolean expireAfterWrite, boolean evictsBySize) {
int flags = (expireAfterWrite ? EXPIRABLE_MASK : 0)
| (evictsBySize ? EVICTABLE_MASK : 0);
return factories[keyStrength.ordinal()][flags];
}
/**
* Creates a new entry.
*
* @param map to create the entry for
* @param key of the entry
* @param hash of the key
* @param next entry in the same bucket
*/
abstract ReferenceEntry newEntry(
CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next);
/**
* Copies an entry, assigning it a new {@code next} entry.
*
* @param original the entry to copy
* @param newNext entry in the same bucket
*/
@GuardedBy("Segment.this")
ReferenceEntry copyEntry(
CustomConcurrentHashMap map,
ReferenceEntry original, ReferenceEntry newNext) {
return newEntry(map, original.getKey(), original.getHash(), newNext);
}
@GuardedBy("Segment.this")
void copyExpirableEntry(
ReferenceEntry original, ReferenceEntry newEntry) {
// TODO(user): when we link values instead of entries this method can go
// away, as can connectExpirables, nullifyExpirable.
newEntry.setExpirationTime(original.getExpirationTime());
connectExpirables(original.getPreviousExpirable(), newEntry);
connectExpirables(newEntry, original.getNextExpirable());
nullifyExpirable(original);
}
@GuardedBy("Segment.this")
void copyEvictableEntry(
ReferenceEntry original, ReferenceEntry newEntry) {
// TODO(user): when we link values instead of entries this method can go
// away, as can connectEvictables, nullifyEvictable.
connectEvictables(original.getPreviousEvictable(), newEntry);
connectEvictables(newEntry, original.getNextEvictable());
nullifyEvictable(original);
}
}
/** A reference to a value. */
interface ValueReference {
/**
* Gets the value. Does not block or throw exceptions.
*/
V get();
/** Creates a copy of this reference for the given entry. */
ValueReference copyFor(ReferenceEntry entry);
/**
* Waits for a value that may still be computing. Unlike get(),
* this method can block (in the case of FutureValueReference) or
* throw an exception.
*/
V waitForValue() throws InterruptedException;
/**
* Clears this reference object. This intentionally mimics {@link
* java.lang.ref.Reference#clear()}, and indeed is implemented by
* {@code Reference} subclasses for weak and soft values.
*/
void clear();
/**
* Returns true if the value type is a computing reference (regardless of
* whether or not computation has completed). This is necessary to
* distiguish between partially-collected entries and computing entries,
* which need to be cleaned up differently.
*/
boolean isComputingReference();
/**
* Invoked after the value has been garbage collected.
*/
void notifyValueReclaimed();
}
/**
* Placeholder. Indicates that the value hasn't been set yet.
*/
static final ValueReference UNSET
= new ValueReference() {
@Override
public Object get() {
return null;
}
@Override
public ValueReference copyFor(
ReferenceEntry entry) {
return this;
}
@Override
public boolean isComputingReference() {
return false;
}
@Override
public Object waitForValue() {
return null;
}
@Override
public void notifyValueReclaimed() {}
@Override
public void clear() {}
};
/**
* Singleton placeholder that indicates a value is being computed.
*/
@SuppressWarnings("unchecked")
// Safe because impl never uses a parameter or returns any non-null value
static ValueReference unset() {
return (ValueReference) UNSET;
}
/** Wrapper class ensures that queue isn't created until it's used. */
private static class QueueHolder {
static final FinalizableReferenceQueue queue
= new FinalizableReferenceQueue();
}
/**
* An entry in a reference map.
*/
interface ReferenceEntry {
/**
* Gets the value reference from this entry.
*/
ValueReference getValueReference();
/**
* Sets the value reference for this entry.
*/
void setValueReference(ValueReference valueReference);
/**
* Invoked after the key has been garbage collected.
*/
void notifyKeyReclaimed();
/**
* Removes this entry from the map if its value reference hasn't
* changed. Used to clean up after values. The value reference can
* just call this method on the entry so it doesn't have to keep
* its own reference to the map.
*/
void notifyValueReclaimed(ValueReference valueReference);
/** Gets the next entry in the chain. */
ReferenceEntry getNext();
/** Gets the entry's hash. */
int getHash();
/** Gets the key for this entry. */
K getKey();
/*
* Used by entries that are expirable. Expirable entries are
* maintained in a doubly-linked list. New entries are added at the tail
* of the list at write time; stale entries are expired from the head
* of the list.
*/
/** Gets the entry expiration time in ns. */
long getExpirationTime();
/** Sets the entry expiration time in ns. */
void setExpirationTime(long time);
/** Gets the next entry in the recency list. */
ReferenceEntry getNextExpirable();
/** Sets the next entry in the recency list. */
void setNextExpirable(ReferenceEntry next);
/** Gets the previous entry in the recency list. */
ReferenceEntry getPreviousExpirable();
/** Sets the previous entry in the recency list. */
void setPreviousExpirable(ReferenceEntry previous);
/*
* Implemented by entries that are evictable. Evictable entries are
* maintained in a doubly-linked list. New entries are added at the tail of
* the list at write time and stale entries are expired from the head of the
* list.
*/
/** Gets the next entry in the recency list. */
ReferenceEntry getNextEvictable();
/** Sets the next entry in the recency list. */
void setNextEvictable(ReferenceEntry next);
/** Gets the previous entry in the recency list. */
ReferenceEntry getPreviousEvictable();
/** Sets the previous entry in the recency list. */
void setPreviousEvictable(ReferenceEntry previous);
}
private enum NullEntry implements ReferenceEntry {
INSTANCE;
@Override
public ValueReference getValueReference() {
return null;
}
@Override
public void setValueReference(
ValueReference valueReference) {}
@Override
public void notifyKeyReclaimed() {}
@Override
public void notifyValueReclaimed(ValueReference v) {}
@Override
public ReferenceEntry getNext() {
return null;
}
@Override
public int getHash() {
return 0;
}
@Override
public Object getKey() {
return null;
}
@Override
public long getExpirationTime() {
return 0;
}
@Override
public void setExpirationTime(long time) {}
@Override
public ReferenceEntry getNextExpirable() {
return this;
}
@Override
public void setNextExpirable(ReferenceEntry next) {}
@Override
public ReferenceEntry getPreviousExpirable() {
return this;
}
@Override
public void setPreviousExpirable(ReferenceEntry previous) {}
@Override
public ReferenceEntry getNextEvictable() {
return this;
}
@Override
public void setNextEvictable(ReferenceEntry next) {}
@Override
public ReferenceEntry getPreviousEvictable() {
return this;
}
@Override
public void setPreviousEvictable(ReferenceEntry previous) {}
}
@SuppressWarnings("unchecked")
// Safe because impl never uses a parameter or returns any non-null value
static ReferenceEntry nullEntry() {
return (ReferenceEntry) NullEntry.INSTANCE;
}
static final Queue extends ReferenceEntry, ?>> DISCARDING_QUEUE =
new AbstractQueue>() {
@Override
public boolean offer(ReferenceEntry, ?> o) {
return true;
}
@Override
public ReferenceEntry, ?> peek() {
return null;
}
@Override
public ReferenceEntry, ?> poll() {
return null;
}
@Override
public int size() {
return 0;
}
@Override
public Iterator> iterator() {
return Iterators.emptyIterator();
}
};
/**
* Queue that discards all elements.
*/
@SuppressWarnings("unchecked")
// Safe because impl never uses a parameter or returns any non-null value
static Queue discardingQueue() {
return (Queue) DISCARDING_QUEUE;
}
/*
* Note: All of this duplicate code sucks, but it saves a lot of memory.
* If only Java had mixins! To maintain this code, make a change for
* the strong reference type. Then, cut and paste, and replace "Strong"
* with "Soft" or "Weak" within the pasted text. The primary difference
* is that strong entries store the key reference directly while soft
* and weak entries delegate to their respective superclasses.
*/
/**
* Used for strongly-referenced keys.
*/
private static class StrongEntry implements ReferenceEntry {
final K key;
StrongEntry(CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
this.map = map;
this.key = key;
this.hash = hash;
this.next = next;
}
@Override
public K getKey() {
return this.key;
}
@Override
public void notifyKeyReclaimed() {}
// null expiration
@Override
public long getExpirationTime() {
throw new UnsupportedOperationException();
}
@Override
public void setExpirationTime(long time) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry getNextExpirable() {
throw new UnsupportedOperationException();
}
@Override
public void setNextExpirable(ReferenceEntry next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry getPreviousExpirable() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousExpirable(ReferenceEntry previous) {
throw new UnsupportedOperationException();
}
// null eviction
@Override
public ReferenceEntry getNextEvictable() {
throw new UnsupportedOperationException();
}
@Override
public void setNextEvictable(ReferenceEntry next) {
throw new UnsupportedOperationException();
}
@Override
public ReferenceEntry getPreviousEvictable() {
throw new UnsupportedOperationException();
}
@Override
public void setPreviousEvictable(ReferenceEntry previous) {
throw new UnsupportedOperationException();
}
// The code below is exactly the same for each entry type.
final CustomConcurrentHashMap map;
final int hash;
final ReferenceEntry next;
volatile ValueReference valueReference = unset();
@Override
public ValueReference getValueReference() {
return valueReference;
}
@Override
public void setValueReference(ValueReference valueReference) {
ValueReference previous = this.valueReference;
this.valueReference = valueReference;
previous.clear();
}
@Override
public void notifyValueReclaimed(ValueReference v) {
map.reclaimValue(this, v);
}
@Override
public int getHash() {
return hash;
}
@Override
public ReferenceEntry getNext() {
return next;
}
}
private static class StrongExpirableEntry extends StrongEntry
implements ReferenceEntry {
StrongExpirableEntry(CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
super(map, key, hash, next);
}
// The code below is exactly the same for each expirable entry type.
volatile long time = Long.MAX_VALUE;
@Override
public long getExpirationTime() {
return time;
}
@Override
public void setExpirationTime(long time) {
this.time = time;
}
@GuardedBy("Segment.this")
ReferenceEntry nextExpirable = nullEntry();
@Override
public ReferenceEntry getNextExpirable() {
return nextExpirable;
}
@Override
public void setNextExpirable(ReferenceEntry next) {
this.nextExpirable = next;
}
@GuardedBy("Segment.this")
ReferenceEntry previousExpirable = nullEntry();
@Override
public ReferenceEntry getPreviousExpirable() {
return previousExpirable;
}
@Override
public void setPreviousExpirable(ReferenceEntry previous) {
this.previousExpirable = previous;
}
}
private static class StrongEvictableEntry extends StrongEntry
implements ReferenceEntry {
StrongEvictableEntry(CustomConcurrentHashMap map, K key, int hash,
@Nullable ReferenceEntry next) {
super(map, key, hash, next);
}
// The code below is exactly the same for each evictable entry type.
@GuardedBy("Segment.this")
ReferenceEntry nextEvictable = nullEntry();
@Override
public ReferenceEntry getNextEvictable() {
return nextEvictable;
}
@Override
public void setNextEvictable(ReferenceEntry next) {
this.nextEvictable = next;
}
@GuardedBy("Segment.this")
ReferenceEntry previousEvictable = nullEntry();
@Override
public ReferenceEntry getPreviousEvictable() {
return previousEvictable;
}
@Override
public void setPreviousEvictable(ReferenceEntry previous) {
this.previousEvictable = previous;
}
}
private static class StrongExpirableEvictableEntry
extends StrongEntry implements ReferenceEntry {
StrongExpirableEvictableEntry(CustomConcurrentHashMap map, K key,
int hash, @Nullable ReferenceEntry next) {
super(map, key, hash, next);
}
// The code below is exactly the same for each expirable entry type.
volatile long time = Long.MAX_VALUE;
@Override
public long getExpirationTime() {
return time;
}
@Override
public void setExpirationTime(long time) {
this.time = time;
}
@GuardedBy("Segment.this")
ReferenceEntry nextExpirable = nullEntry();
@Override
public ReferenceEntry getNextExpirable() {
return nextExpirable;
}
@Override
public void setNextExpirable(ReferenceEntry