All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.netflix.fenzo.ScaleDownConstraintExecutor Maven / Gradle / Ivy

There is a newer version: 1.0.1
Show newest version
/*
 * Copyright 2017 Netflix, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.netflix.fenzo;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;

/**
 * {@link ScaleDownConstraintExecutor} uses {@link ScaleDownOrderEvaluator} and multiple
 * {@link ScaleDownConstraintEvaluator}s to determine termination order of candidate VM list. The evaluation process
 * includes the following steps:
 * 
    *
  • {@link ScaleDownOrderEvaluator} splits candidate VMs into ordered list of equivalence groups
  • *
  • For each equivalence group multiple {@link ScaleDownOrderEvaluator}s are executed to produce a score for each VM
  • *
  • VMs are ordered in each equivalence group with the highest score first
  • *
  • The ordered equivalence groups are merged into single list, preserving the partitioning order computed by * {@link ScaleDownConstraintExecutor}. This list is returned as a result. *
  • *
*/ class ScaleDownConstraintExecutor { private static final Logger logger = LoggerFactory.getLogger(ScaleDownConstraintExecutor.class); private static final double NOT_REMOVABLE_MARKER = -1; private final ScaleDownOrderEvaluator orderEvaluator; private final Map scoringEvaluators; ScaleDownConstraintExecutor(ScaleDownOrderEvaluator orderEvaluator, Map weightedScoringEvaluators) { checkArguments(weightedScoringEvaluators); this.orderEvaluator = orderEvaluator; this.scoringEvaluators = weightedScoringEvaluators; } List evaluate(Collection candidates) { List> fixedOrder = orderEvaluator.evaluate(candidates); List scaleDownOrder = scoringEvaluators.isEmpty() ? fixedOrder.stream().flatMap(Set::stream).collect(Collectors.toList()) : fixedOrder.stream().flatMap(this::groupEvaluator).collect(Collectors.toList()); if (logger.isDebugEnabled()) { List hosts = scaleDownOrder.stream().map(VirtualMachineLease::hostname).collect(Collectors.toList()); logger.debug("Evaluated scale down order: {}", hosts); } return scaleDownOrder; } private void checkArguments(Map weightedScoringEvaluators) { List evaluatorsWithInvalidWeights = weightedScoringEvaluators.entrySet().stream() .filter(e -> e.getValue() <= 0) .map(e -> e.getKey().getName() + '=' + e.getValue()) .collect(Collectors.toList()); if (!evaluatorsWithInvalidWeights.isEmpty()) { throw new IllegalArgumentException("Evaluator weighs must be > 0. This invariant is violated by " + evaluatorsWithInvalidWeights); } } private Stream groupEvaluator(Set groupCandidates) { Map scores = new HashMap<>(); scoringEvaluators.forEach((e, weight) -> { Optional optionalContext = Optional.empty(); for (VirtualMachineLease lease : groupCandidates) { double currentScore = scores.getOrDefault(lease, 0.0); if (currentScore != NOT_REMOVABLE_MARKER) { ScaleDownConstraintEvaluator.Result result = e.evaluate(lease, optionalContext); double newScore = result.getScore() * weight; if (newScore == 0) { scores.put(lease, NOT_REMOVABLE_MARKER); } else { scores.put(lease, currentScore + newScore); } optionalContext = result.getContext(); } } }); return scores.entrySet().stream() .filter(e -> e.getValue() != NOT_REMOVABLE_MARKER) .sorted((e1, e2) -> Double.compare(e2.getValue(), e1.getValue())) // Descending order .map(Map.Entry::getKey); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy