All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.netflix.hystrix.metric.consumer.RollingCommandLatencyDistributionStream Maven / Gradle / Ivy

There is a newer version: 1.5.18
Show newest version
/**
 * Copyright 2015 Netflix, Inc.
 * 

* Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at *

* http://www.apache.org/licenses/LICENSE-2.0 *

* Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.netflix.hystrix.metric.consumer; import com.netflix.hystrix.HystrixCommandKey; import com.netflix.hystrix.HystrixCommandProperties; import com.netflix.hystrix.metric.HystrixCommandCompletion; import com.netflix.hystrix.metric.HystrixCommandCompletionStream; import com.netflix.hystrix.metric.HystrixCommandEvent; import org.HdrHistogram.Histogram; import rx.functions.Func2; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; /** * Maintains a stream of latency distributions for a given Command. * There is a rolling window abstraction on this stream. * The latency distribution object is calculated over a window of t1 milliseconds. This window has b buckets. * Therefore, a new set of counters is produced every t2 (=t1/b) milliseconds * t1 = {@link HystrixCommandProperties#metricsRollingPercentileWindowInMilliseconds()} * b = {@link HystrixCommandProperties#metricsRollingPercentileBucketSize()} * * These values are stable - there's no peeking into a bucket until it is emitted * * The only latencies which get included in the distribution are for those commands which started execution. * This relies on {@link HystrixCommandEvent#didCommandExecute()} * * These values get produced and cached in this class. * The distributions can be queried on 2 dimensions: * * Execution time or total time * ** Execution time is the time spent executing the user-provided execution method. * ** Total time is the time spent from the perspecitve of the consumer, and includes all Hystrix bookkeeping. */ public class RollingCommandLatencyDistributionStream extends RollingDistributionStream { private static final ConcurrentMap streams = new ConcurrentHashMap(); private static final Func2 addValuesToBucket = new Func2() { @Override public Histogram call(Histogram initialDistribution, HystrixCommandCompletion event) { if (event.didCommandExecute() && event.getExecutionLatency() > -1) { initialDistribution.recordValue(event.getExecutionLatency()); } return initialDistribution; } }; public static RollingCommandLatencyDistributionStream getInstance(HystrixCommandKey commandKey, HystrixCommandProperties properties) { final int percentileMetricWindow = properties.metricsRollingPercentileWindowInMilliseconds().get(); final int numPercentileBuckets = properties.metricsRollingPercentileWindowBuckets().get(); final int percentileBucketSizeInMs = percentileMetricWindow / numPercentileBuckets; return getInstance(commandKey, numPercentileBuckets, percentileBucketSizeInMs); } public static RollingCommandLatencyDistributionStream getInstance(HystrixCommandKey commandKey, int numBuckets, int bucketSizeInMs) { RollingCommandLatencyDistributionStream initialStream = streams.get(commandKey.name()); if (initialStream != null) { return initialStream; } else { synchronized (RollingCommandLatencyDistributionStream.class) { RollingCommandLatencyDistributionStream existingStream = streams.get(commandKey.name()); if (existingStream == null) { RollingCommandLatencyDistributionStream newStream = new RollingCommandLatencyDistributionStream(commandKey, numBuckets, bucketSizeInMs); streams.putIfAbsent(commandKey.name(), newStream); return newStream; } else { return existingStream; } } } } public static void reset() { streams.clear(); } private RollingCommandLatencyDistributionStream(HystrixCommandKey commandKey, int numPercentileBuckets, int percentileBucketSizeInMs) { super(HystrixCommandCompletionStream.getInstance(commandKey), numPercentileBuckets, percentileBucketSizeInMs, addValuesToBucket); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy