All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.netflix.stats.distribution.Histogram Maven / Gradle / Ivy

/*
*
* Copyright 2013 Netflix, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.netflix.stats.distribution;

import java.util.concurrent.atomic.AtomicLong;


/**
 * This extends {@link Distribution Distribution} by tracking counts of
 * values per "bucket" and the ability to find the (approximate) median value.
 * 

* Note that this implements {@link HistogramMBean} and so can be registered * as an MBean and accessed via JMX if desired. * * @author netflixoss $ * @version $Revision: $ */ public class Histogram extends Distribution implements HistogramMBean { private final double[] bucketLimits; private final AtomicLong[] bucketCounts; /* * Constructors */ /** * Creates a new initially empty Histogram. * * @param bucketLimits an array of max values for each bucket; * the values must be sorted in increasing order. * The first bucket records values in the range * (-infinity .. bucketLimits[0]), * the last bucket records values in the range * (bucketLimits[bucketLimits.length-1] .. +infinity) */ public Histogram(double[] bucketLimits) { super(); // Copy the supplied limits to ensure that they remain fixed this.bucketLimits = new double[bucketLimits.length]; for (int i = 0; i < bucketLimits.length; i++) { this.bucketLimits[i] = bucketLimits[i]; } // One extra bucket with implied max of +infinity bucketCounts = makeBuckets(bucketLimits.length + 1); } /** * Creates a new initially empty Histogram with * uniformally sized buckets. * * @param min the upper limit for the first bucket * @param max the upper limit for the final bucket * (excluding the catch-all bucket) * @param step the size of the range of each bucket */ public Histogram(double min, double max, double step) { super(); bucketLimits = new double[1 + (int) Math.ceil((max - min) / step)]; bucketLimits[0] = min; for (int i = 1; i < bucketLimits.length; i++) { bucketLimits[i] = bucketLimits[i - 1] + step; } // One extra bucket with implied max of +infinity bucketCounts = makeBuckets(bucketLimits.length + 1); } private AtomicLong[] makeBuckets(int cnt) { AtomicLong[] buckets = new AtomicLong[cnt]; for (int i = 0; i < cnt; i++) { buckets[i] = new AtomicLong(0); } return buckets; } /* * Accumulating new values */ /** {@inheritDoc} */ @Override public void noteValue(double val) { super.noteValue(val); updateBucket(val, findBucket(val)); } private int findBucket(double val) { // linear scan should be fast enough for (int i = 0; i < getNumBuckets(); i++) { if (val < getBucketMaximum(i)) { return i; } } // fall through if must use final catch-all bucket return getNumBuckets() - 1; } private void updateBucket(double val, int idx) { bucketCounts[idx].incrementAndGet(); } private void clearBucket(int idx) { bucketCounts[idx].set(0); } /** {@inheritDoc} */ @Override public void clear() { super.clear(); for (int idx = 0; idx < getNumBuckets(); idx++) { clearBucket(idx); } } /* * Accessors */ /** {@inheritDoc} */ public int getNumBuckets() { return bucketCounts.length; } /** * Gets the number of values recorded in a bucket. */ public long getBucketCount(int i) { return bucketCounts[i].get(); } /** * Gets the minimum for values recorded in a bucket. * This is an inclusive minimum; values equal to the * bucket limit are counted in this bucket. */ public double getBucketMinimum(int i) { if (i > 0) { return bucketLimits[i - 1]; } else if (getBucketCount(i) == 0) { // Edge case -- first bucket, but it is empty return Double.MIN_VALUE; } else { // First bucket is non-empty return getMinimum(); } } /** * Gets the maximum for values recorded in a bucket. * This is an exclusive maximum; values equal to the * bucket limit are counted in the subsequent bucket. */ public double getBucketMaximum(int i) { if (i < bucketLimits.length) { return bucketLimits[i]; } else if (getBucketCount(i) == 0) { // last bucket, but empty return Double.MAX_VALUE; } else { return getMaximum(); } } /** {@inheritDoc} */ public long[] getBucketCounts() { long[] counts = new long[getNumBuckets()]; for (int i = 0; i < counts.length; i++) { counts[i] = getBucketCount(i); } return counts; } /** {@inheritDoc} */ public double[] getBucketMinimums() { double[] mins = new double[getNumBuckets()]; for (int i = 0; i < mins.length; i++) { mins[i] = getBucketMinimum(i); } return mins; } /** {@inheritDoc} */ public double[] getBucketMaximums() { double[] maxs = new double[getNumBuckets()]; for (int i = 0; i < maxs.length; i++) { maxs[i] = getBucketMaximum(i); } return maxs; } /** {@inheritDoc} */ public double getMedian() { return getPercentile(50); // SUPPRESS CHECKSTYLE MagicNumber } private double getNthValue(double n) { // A few simple cases to start off if (n <= 0) { return getMinimum(); } else if (n >= (getNumValues() - 1)) { return getMaximum(); } // Now on to the general case int bucket = 0; int lastBucket = getNumBuckets() - 1; double needed = n; // Skip to the bucket that contains the desired index while (needed > 0 && bucket < lastBucket && needed >= getBucketCount(bucket)) { needed -= getBucketCount(bucket); bucket++; } assert needed >= 0.0; /* * Find the desired value in the bucket. * Assume a smooth linear distribution of values in the bucket, * like this (for six values): * * min max * x------x------x------x------x------x------| * ^ ^ ^ ^ ^ ^ * * Note that the values avoid the final endpoint. * * However, for the last bucket the true maximum is known * and so the distribution looks like: * * min max * x--------x--------x--------x--------x--------x * ^ ^ ^ ^ ^ ^ */ double min = getBucketMinimum(bucket); double max = getBucketMaximum(bucket); double tmp = getMinimum(); if (min < tmp) { min = tmp; } tmp = getMaximum(); if (max > tmp) { max = tmp; } assert min <= max; long count = getBucketCount(bucket); assert needed <= count; double value; if (bucket < lastBucket) { value = min + (max - min) * needed / count; } else if (count == 1) { // Final bucket, and only one entry (the max) value = max; } else { // Final bucket value = min + (max - min) * needed / (count - 1); } return value; } /** {@inheritDoc} */ public double getPercentile(int percent) { if (getNumValues() == 0) { return getMinimum(); } else { return getNthValue(getNumValues() * (percent / 100.0)); // SUPPRESS CHECKSTYLE MagicNumber } } private double getValueIndex(double value) { // A few simple cases to start off if (value <= getMinimum()) { return 0; } else if (value >= getMaximum()) { return getNumValues() - 1; } // Now on to the general case int bucket = 0; int lastBucket = getNumBuckets() - 1; double idx = 0.0; // Skip to the bucket that contains the desired value while (bucket < lastBucket && getBucketMaximum(bucket) <= value) { idx += getBucketCount(bucket); bucket++; } /* * Find the desired index in the bucket. * See comment in getNthValue() for details on the assumed * distribution of values. */ double min = getBucketMinimum(bucket); double max = getBucketMaximum(bucket); long count = getBucketCount(bucket); assert min <= value; assert value < max; if (count == 0) { count = 0; // bad edge case -- just leave index alone (code in plae to suppress findbugs) } else if (bucket < lastBucket) { idx += count * (value - min) / (max - min); } else { idx += (count - 1) * (value - min) / (max - min); } assert idx >= 0; assert idx <= getNumValues() - 1; return idx; } /** {@inheritDoc} */ public long getPercentileRank(double value) { // CHECKSTYLE IGNORE MagicNumber if (getNumValues() <= 1) { return 50; } else { return Math.round(getValueIndex(value) * 100.0 / (getNumValues() - 1)); } // CHECKSTYLE END IGNORE MagicNumber } } // Histogram





© 2015 - 2025 Weber Informatics LLC | Privacy Policy