All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.netflix.stats.distribution.Distribution Maven / Gradle / Ivy

There is a newer version: 0.3.0
Show newest version
/*
*
* Copyright 2013 Netflix, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.netflix.stats.distribution;


/**
 * Accumulator of statistics about a distribution of
 * observed values that are produced incrementally.
 * 

* Note that the implementation is not synchronized, * and simultaneous updates may produce incorrect results. * In most cases these incorrect results will be unimportant, * but applications that care should synchronize carefully * to ensure consistent results. *

* Note that this implements {@link DistributionMBean} and so can be * registered as an MBean and accessed via JMX if desired. * * @author netflixoss $ * @version $Revision: $ */ public class Distribution implements DistributionMBean, DataCollector { private long numValues; private double sumValues; private double sumSquareValues; private double minValue; private double maxValue; /* * Constructors */ /** * Creates a new initially empty Distribution. */ public Distribution() { numValues = 0L; sumValues = 0.0; sumSquareValues = 0.0; minValue = 0.0; maxValue = 0.0; } /* * Accumulating new values */ /** {@inheritDoc} */ public void noteValue(double val) { numValues++; sumValues += val; sumSquareValues += val * val; if (numValues == 1) { minValue = val; maxValue = val; } else if (val < minValue) { minValue = val; } else if (val > maxValue) { maxValue = val; } } /** {@inheritDoc} */ public void clear() { numValues = 0L; sumValues = 0.0; sumSquareValues = 0.0; minValue = 0.0; maxValue = 0.0; } /* * Accessors */ /** {@inheritDoc} */ public long getNumValues() { return numValues; } /** {@inheritDoc} */ public double getMean() { if (numValues < 1) { return 0.0; } else { return sumValues / numValues; } } /** {@inheritDoc} */ public double getVariance() { if (numValues < 2) { return 0.0; } else if (sumValues == 0.0) { return 0.0; } else { double mean = getMean(); return (sumSquareValues / numValues) - mean * mean; } } /** {@inheritDoc} */ public double getStdDev() { return Math.sqrt(getVariance()); } /** {@inheritDoc} */ public double getMinimum() { return minValue; } /** {@inheritDoc} */ public double getMaximum() { return maxValue; } /** * Add another {@link Distribution}'s values to this one. * * @param anotherDistribution * the other {@link Distribution} instance */ public void add(Distribution anotherDistribution) { if (anotherDistribution != null) { numValues += anotherDistribution.numValues; sumValues += anotherDistribution.sumValues; sumSquareValues += anotherDistribution.sumSquareValues; minValue = (minValue < anotherDistribution.minValue) ? minValue : anotherDistribution.minValue; maxValue = (maxValue > anotherDistribution.maxValue) ? maxValue : anotherDistribution.maxValue; } } @Override public String toString() { return new StringBuilder() .append("{Distribution:") .append("N=").append(getNumValues()) .append(": ").append(getMinimum()) .append("..").append(getMean()) .append("..").append(getMaximum()) .append("}") .toString(); } } // Distribution





© 2015 - 2025 Weber Informatics LLC | Privacy Policy