model.MARK_II.region.Neuron Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of WalnutiQ Show documentation
Show all versions of WalnutiQ Show documentation
A Java based Neuron Modeling framework
The newest version!
package model.MARK_II.region;
import model.MARK_II.generalAlgorithm.AlgorithmStatistics;
import java.util.ArrayList;
import java.util.List;
/**
* Simulates a cortical pyramidal cell.
*
* A real Neuron has many different states 1) 3 spikes per second 2) 10+ spikes
* per second 3) 0 spikes per second Support: https://db.tt/QFqA4Dta
*
* However this Neuron model only models 2 different states:
* 1) active Neuron = any kind of spiking activity for a real Neuron
* (implemented in Cell.java class)
*
* 2) predictive Neuron = depolarized real Neuron
*
* @author Quinn Liu ([email protected])
* @author Michael Cogswell ([email protected])
* @version July 22, 2013
*/
public class Neuron extends Cell {
private boolean isPredicting; // = possiblyActiveInNextTimeStep
private boolean wasPredicting;
private List distalSegments;
public Neuron() {
super();
this.isPredicting = false;
this.wasPredicting = false;
this.distalSegments = new ArrayList();
}
public void nextTimeStep() {
this.wasActive = super.isActive;
super.isActive = false;
this.wasPredicting = this.isPredicting;
this.isPredicting = false;
}
public boolean getPredictingState() {
return this.isPredicting;
}
public void setPredictingState(boolean predictingState) {
this.isPredicting = predictingState;
}
public boolean getPreviousPredictingState() {
return this.wasPredicting;
}
public void setPreviousPredictingState(boolean previousPredictingState) {
this.wasPredicting = previousPredictingState;
}
/**
* For the given column c cell i, return a segment index such that
* segmentActive(s,t, state) is true. If multiple segments are active,
* sequence segments are given preference. Otherwise, segments with most
* activity are given preference.
*
* Return a DistalSegment that was active in the previous time step. If more
* than one DistalSegment was active, sequence segments are considered. If
* more than one sequence segment was active, the segment with the most
* activity is returned.
*/
public DistalSegment getBestPreviousActiveSegment(AlgorithmStatistics algorithmStatistics) {
List previousActiveSegments = new ArrayList();
List previousActiveSequenceSegment = new ArrayList();
for (DistalSegment distalSegment : this.distalSegments) {
if (distalSegment.getPreviousActiveState()
&& distalSegment
.getSequenceStatePredictsFeedFowardInputOnNextStep()) {
previousActiveSegments.add(distalSegment);
previousActiveSequenceSegment.add(distalSegment);
} else if (distalSegment.getPreviousActiveState()) {
previousActiveSegments.add(distalSegment);
}
}
if (previousActiveSegments.size() == 0) {
return this.getPreviousSegmentWithMostActivity(this.distalSegments, algorithmStatistics);
} else if (previousActiveSegments.size() == 1) {
return previousActiveSegments.get(0);
} else { // previousActiveSegments.size() > 1
if (previousActiveSequenceSegment.size() == 0) {
return this
.getPreviousSegmentWithMostActivity(this.distalSegments, algorithmStatistics);
} else if (previousActiveSequenceSegment.size() == 1) {
return previousActiveSequenceSegment.get(0);
} else { // previousActiveSequenceSegments.size() > 1
return this
.getPreviousSegmentWithMostActivity(previousActiveSequenceSegment, algorithmStatistics);
}
}
}
DistalSegment getPreviousSegmentWithMostActivity(
List whichSegmentsToCheck, AlgorithmStatistics algorithmStatistics) {
if (whichSegmentsToCheck.size() == 0) {
DistalSegment newDistalSegment = new DistalSegment();
algorithmStatistics.getTP_distalSegmentsHistoryAndAdd(1);
this.addDistalSegment(newDistalSegment);
return newDistalSegment;
}
DistalSegment mostActiveDistalSegment = this.distalSegments.get(0);
int maxPreviousActiveSynapses = 0;
for (DistalSegment distalSegment : whichSegmentsToCheck) {
int previousActiveSynapses = distalSegment
.getNumberOfPreviousActiveSynapses();
if (previousActiveSynapses > maxPreviousActiveSynapses) {
maxPreviousActiveSynapses = previousActiveSynapses;
mostActiveDistalSegment = distalSegment;
}
}
if (maxPreviousActiveSynapses == 0) {
// there were no previously active distal segments
DistalSegment newDistalSegment = new DistalSegment();
algorithmStatistics.getTP_distalSegmentsHistoryAndAdd(1);
this.addDistalSegment(newDistalSegment);
return newDistalSegment;
}
return mostActiveDistalSegment;
}
public DistalSegment getBestActiveSegment(AlgorithmStatistics algorithmStatistics) {
if (this.distalSegments.size() == 0) {
DistalSegment newDistalSegment = new DistalSegment();
algorithmStatistics.getTP_distalSegmentsHistoryAndAdd(1);
this.addDistalSegment(newDistalSegment);
return newDistalSegment;
}
DistalSegment mostActiveDistalSegment = this.distalSegments.get(0);
int maxActiveSynapses = 0;
for (DistalSegment distalSegment : this.distalSegments) {
int activeSynapses = distalSegment.getNumberOfActiveSynapses();
if (activeSynapses > maxActiveSynapses) {
maxActiveSynapses = activeSynapses;
mostActiveDistalSegment = distalSegment;
}
}
return mostActiveDistalSegment;
}
public List getDistalSegments() {
return this.distalSegments;
}
public void addDistalSegment(DistalSegment distalSegment) {
if (distalSegment == null) {
throw new IllegalArgumentException(
"distalSegment in neuron class method addDistalSegment cannot be null");
}
this.distalSegments.add(distalSegment);
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
Neuron other = (Neuron) obj;
if (distalSegments == null) {
if (other.distalSegments != null)
return false;
} else if (!distalSegments.equals(other.distalSegments))
return false;
if (isPredicting != other.isPredicting)
return false;
if (wasPredicting != other.wasPredicting)
return false;
return true;
}
@Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append("\n===========================");
stringBuilder.append("\n--------Neuron Info--------");
stringBuilder.append("\n isActive: ");
stringBuilder.append(this.isActive);
stringBuilder.append("\n wasActive: ");
stringBuilder.append(this.wasActive);
stringBuilder.append("\n isPredicting: ");
stringBuilder.append("\n===========================");
String NeuronInformation = stringBuilder.toString();
return NeuronInformation;
}
}