org.apache.commons.math3.genetics.RandomKey Maven / Gradle / Ivy
The newest version!
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.genetics; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.List; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.util.LocalizedFormats; /** * Random Key chromosome is used for permutation representation. It is a vector * of a fixed length of real numbers in [0,1] interval. The index of the i-th * smallest value in the vector represents an i-th member of the permutation. *
iff* For example, the random key [0.2, 0.3, 0.8, 0.1] corresponds to the * permutation of indices (3,0,1,2). If the original (unpermuted) sequence would * be (a,b,c,d), this would mean the sequence (d,a,b,c). *
* With this representation, common operators like n-point crossover can be * used, because any such chromosome represents a valid permutation. *
* Since the chromosome (and thus its arrayRepresentation) is immutable, the * array representation is sorted only once in the constructor. *
* For details, see: *
*
* * @param- Bean, J.C.: Genetic algorithms and random keys for sequencing and * optimization. ORSA Journal on Computing 6 (1994) 154-160
*- Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. * Volume 104 of Studies in Fuzziness and Soft Computing. Physica-Verlag, * Heidelberg (2002)
*type of the permuted objects * @since 2.0 */ public abstract class RandomKey extends AbstractListChromosome implements PermutationChromosome { /** Cache of sorted representation (unmodifiable). */ private final List sortedRepresentation; /** * Base sequence [0,1,...,n-1], permuted according to the representation (unmodifiable). */ private final List baseSeqPermutation; /** * Constructor. * * @param representation list of [0,1] values representing the permutation * @throws InvalidRepresentationException iff the representation
can not represent a valid chromosome */ public RandomKey(final Listrepresentation) throws InvalidRepresentationException { super(representation); // store the sorted representation List sortedRepr = new ArrayList (getRepresentation()); Collections.sort(sortedRepr); sortedRepresentation = Collections.unmodifiableList(sortedRepr); // store the permutation of [0,1,...,n-1] list for toString() and isSame() methods baseSeqPermutation = Collections.unmodifiableList( decodeGeneric(baseSequence(getLength()), getRepresentation(), sortedRepresentation) ); } /** * Constructor. * * @param representation array of [0,1] values representing the permutation * @throws InvalidRepresentationException iff the representation
can not represent a valid chromosome */ public RandomKey(final Double[] representation) throws InvalidRepresentationException { this(Arrays.asList(representation)); } /** * {@inheritDoc} */ public Listdecode(final List sequence) { return decodeGeneric(sequence, getRepresentation(), sortedRepresentation); } /** * Decodes a permutation represented by representation
and * returns a (generic) list with the permuted values. * * @paramgeneric type of the sequence values * @param sequence the unpermuted sequence * @param representation representation of the permutation ([0,1] vector) * @param sortedRepr sortedrepresentation
* @return list with the sequence values permuted according to the representation * @throws DimensionMismatchException iff the length of thesequence
, *representation
orsortedRepr
lists are not equal */ private staticListdecodeGeneric(final Listsequence, Listrepresentation, final List sortedRepr) throws DimensionMismatchException { int l = sequence.size(); // the size of the three lists must be equal if (representation.size() != l) { throw new DimensionMismatchException(representation.size(), l); } if (sortedRepr.size() != l) { throw new DimensionMismatchException(sortedRepr.size(), l); } // do not modify the original representation List reprCopy = new ArrayList (representation); // now find the indices in the original repr and use them for permuting List res = new ArrayList(l); for (int i=0; itrue another
is a RandomKey and * encodes the same permutation. * * @param another chromosome to compare * @return true iff chromosomes encode the same permutation */ @Override protected boolean isSame(final Chromosome another) { // type check if (! (another instanceof RandomKey>)) { return false; } RandomKey> anotherRk = (RandomKey>) another; // size check if (getLength() != anotherRk.getLength()) { return false; } // two different representations can still encode the same permutation // the ordering is what counts ListthisPerm = this.baseSeqPermutation; List anotherPerm = anotherRk.baseSeqPermutation; for (int i=0; i chromosomeRepresentation) throws InvalidRepresentationException { for (double val : chromosomeRepresentation) { if (val < 0 || val > 1) { throw new InvalidRepresentationException(LocalizedFormats.OUT_OF_RANGE_SIMPLE, val, 0, 1); } } } /** * Generates a representation corresponding to a random permutation of * length l which can be passed to the RandomKey constructor. * * @param l length of the permutation * @return representation of a random permutation */ public static final List randomPermutation(final int l) { List repr = new ArrayList (l); for (int i=0; i identityPermutation(final int l) { List repr = new ArrayList (l); for (int i=0; i data sorted by comparator
. The *data
is not modified during the process. * * This is useful if you want to inject some permutations to the initial * population. * * @paramtype of the data * @param data list of data determining the order * @param comparator how the data will be compared * @return list representation of the permutation corresponding to the parameters */ public staticListcomparatorPermutation(final List data, final Comparatorcomparator) { ListsortedData = new ArrayList(data); Collections.sort(sortedData, comparator); return inducedPermutation(data, sortedData); } /** * Generates a representation of a permutation corresponding to a * permutation which yieldspermutedData
when applied to *originalData
. * * This method can be viewed as an inverse to {@link #decode(List)}. * * @paramtype of the data * @param originalData the original, unpermuted data * @param permutedData the data, somehow permuted * @return representation of a permutation corresponding to the permutation *originalData -> permutedData
* @throws DimensionMismatchException iff the length oforiginalData
* andpermutedData
lists are not equal * @throws MathIllegalArgumentException iff thepermutedData
and *originalData
lists contain different data */ public staticListinducedPermutation(final List originalData, final ListpermutedData) throws DimensionMismatchException, MathIllegalArgumentException { if (originalData.size() != permutedData.size()) { throw new DimensionMismatchException(permutedData.size(), originalData.size()); } int l = originalData.size(); ListorigDataCopy = new ArrayList(originalData); Double[] res = new Double[l]; for (int i=0; ibaseSequence(final int l) { List baseSequence = new ArrayList (l); for (int i=0; i