All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.euclidean.twod.Line Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.twod;

import java.awt.geom.AffineTransform;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Vector;
import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D;
import org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet;
import org.apache.commons.math3.geometry.euclidean.oned.OrientedPoint;
import org.apache.commons.math3.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math3.geometry.partitioning.Embedding;
import org.apache.commons.math3.geometry.partitioning.Hyperplane;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.geometry.partitioning.Transform;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/** This class represents an oriented line in the 2D plane.

 * 

An oriented line can be defined either by prolongating a line * segment between two points past these points, or by one point and * an angular direction (in trigonometric orientation).

*

Since it is oriented the two half planes at its two sides are * unambiguously identified as a left half plane and a right half * plane. This can be used to identify the interior and the exterior * in a simple way by local properties only when part of a line is * used to define part of a polygon boundary.

*

A line can also be used to completely define a reference frame * in the plane. It is sufficient to select one specific point in the * line (the orthogonal projection of the original reference frame on * the line) and to use the unit vector in the line direction and the * orthogonal vector oriented from left half plane to right half * plane. We define two coordinates by the process, the * abscissa along the line, and the offset across * the line. All points of the plane are uniquely identified by these * two coordinates. The line is the set of points at zero offset, the * left half plane is the set of points with negative offsets and the * right half plane is the set of points with positive offsets.

* @since 3.0 */ public class Line implements Hyperplane, Embedding { /** Default value for tolerance. */ private static final double DEFAULT_TOLERANCE = 1.0e-10; /** Angle with respect to the abscissa axis. */ private double angle; /** Cosine of the line angle. */ private double cos; /** Sine of the line angle. */ private double sin; /** Offset of the frame origin. */ private double originOffset; /** Tolerance below which points are considered identical. */ private final double tolerance; /** Reverse line. */ private Line reverse; /** Build a line from two points. *

The line is oriented from p1 to p2

* @param p1 first point * @param p2 second point * @param tolerance tolerance below which points are considered identical * @since 3.3 */ public Line(final Vector2D p1, final Vector2D p2, final double tolerance) { reset(p1, p2); this.tolerance = tolerance; } /** Build a line from a point and an angle. * @param p point belonging to the line * @param angle angle of the line with respect to abscissa axis * @param tolerance tolerance below which points are considered identical * @since 3.3 */ public Line(final Vector2D p, final double angle, final double tolerance) { reset(p, angle); this.tolerance = tolerance; } /** Build a line from its internal characteristics. * @param angle angle of the line with respect to abscissa axis * @param cos cosine of the angle * @param sin sine of the angle * @param originOffset offset of the origin * @param tolerance tolerance below which points are considered identical * @since 3.3 */ private Line(final double angle, final double cos, final double sin, final double originOffset, final double tolerance) { this.angle = angle; this.cos = cos; this.sin = sin; this.originOffset = originOffset; this.tolerance = tolerance; this.reverse = null; } /** Build a line from two points. *

The line is oriented from p1 to p2

* @param p1 first point * @param p2 second point * @deprecated as of 3.3, replaced with {@link #Line(Vector2D, Vector2D, double)} */ @Deprecated public Line(final Vector2D p1, final Vector2D p2) { this(p1, p2, DEFAULT_TOLERANCE); } /** Build a line from a point and an angle. * @param p point belonging to the line * @param angle angle of the line with respect to abscissa axis * @deprecated as of 3.3, replaced with {@link #Line(Vector2D, double, double)} */ @Deprecated public Line(final Vector2D p, final double angle) { this(p, angle, DEFAULT_TOLERANCE); } /** Copy constructor. *

The created instance is completely independent from the * original instance, it is a deep copy.

* @param line line to copy */ public Line(final Line line) { angle = MathUtils.normalizeAngle(line.angle, FastMath.PI); cos = line.cos; sin = line.sin; originOffset = line.originOffset; tolerance = line.tolerance; reverse = null; } /** {@inheritDoc} */ public Line copySelf() { return new Line(this); } /** Reset the instance as if built from two points. *

The line is oriented from p1 to p2

* @param p1 first point * @param p2 second point */ public void reset(final Vector2D p1, final Vector2D p2) { unlinkReverse(); final double dx = p2.getX() - p1.getX(); final double dy = p2.getY() - p1.getY(); final double d = FastMath.hypot(dx, dy); if (d == 0.0) { angle = 0.0; cos = 1.0; sin = 0.0; originOffset = p1.getY(); } else { angle = FastMath.PI + FastMath.atan2(-dy, -dx); cos = dx / d; sin = dy / d; originOffset = MathArrays.linearCombination(p2.getX(), p1.getY(), -p1.getX(), p2.getY()) / d; } } /** Reset the instance as if built from a line and an angle. * @param p point belonging to the line * @param alpha angle of the line with respect to abscissa axis */ public void reset(final Vector2D p, final double alpha) { unlinkReverse(); this.angle = MathUtils.normalizeAngle(alpha, FastMath.PI); cos = FastMath.cos(this.angle); sin = FastMath.sin(this.angle); originOffset = MathArrays.linearCombination(cos, p.getY(), -sin, p.getX()); } /** Revert the instance. */ public void revertSelf() { unlinkReverse(); if (angle < FastMath.PI) { angle += FastMath.PI; } else { angle -= FastMath.PI; } cos = -cos; sin = -sin; originOffset = -originOffset; } /** Unset the link between an instance and its reverse. */ private void unlinkReverse() { if (reverse != null) { reverse.reverse = null; } reverse = null; } /** Get the reverse of the instance. *

Get a line with reversed orientation with respect to the * instance.

*

* As long as neither the instance nor its reverse are modified * (i.e. as long as none of the {@link #reset(Vector2D, Vector2D)}, * {@link #reset(Vector2D, double)}, {@link #revertSelf()}, * {@link #setAngle(double)} or {@link #setOriginOffset(double)} * methods are called), then the line and its reverse remain linked * together so that {@code line.getReverse().getReverse() == line}. * When one of the line is modified, the link is deleted as both * instance becomes independent. *

* @return a new line, with orientation opposite to the instance orientation */ public Line getReverse() { if (reverse == null) { reverse = new Line((angle < FastMath.PI) ? (angle + FastMath.PI) : (angle - FastMath.PI), -cos, -sin, -originOffset, tolerance); reverse.reverse = this; } return reverse; } /** Transform a space point into a sub-space point. * @param vector n-dimension point of the space * @return (n-1)-dimension point of the sub-space corresponding to * the specified space point */ public Vector1D toSubSpace(Vector vector) { return toSubSpace((Point) vector); } /** Transform a sub-space point into a space point. * @param vector (n-1)-dimension point of the sub-space * @return n-dimension point of the space corresponding to the * specified sub-space point */ public Vector2D toSpace(Vector vector) { return toSpace((Point) vector); } /** {@inheritDoc} */ public Vector1D toSubSpace(final Point point) { Vector2D p2 = (Vector2D) point; return new Vector1D(MathArrays.linearCombination(cos, p2.getX(), sin, p2.getY())); } /** {@inheritDoc} */ public Vector2D toSpace(final Point point) { final double abscissa = ((Vector1D) point).getX(); return new Vector2D(MathArrays.linearCombination(abscissa, cos, -originOffset, sin), MathArrays.linearCombination(abscissa, sin, originOffset, cos)); } /** Get the intersection point of the instance and another line. * @param other other line * @return intersection point of the instance and the other line * or null if there are no intersection points */ public Vector2D intersection(final Line other) { final double d = MathArrays.linearCombination(sin, other.cos, -other.sin, cos); if (FastMath.abs(d) < tolerance) { return null; } return new Vector2D(MathArrays.linearCombination(cos, other.originOffset, -other.cos, originOffset) / d, MathArrays.linearCombination(sin, other.originOffset, -other.sin, originOffset) / d); } /** {@inheritDoc} * @since 3.3 */ public Point project(Point point) { return toSpace(toSubSpace(point)); } /** {@inheritDoc} * @since 3.3 */ public double getTolerance() { return tolerance; } /** {@inheritDoc} */ public SubLine wholeHyperplane() { return new SubLine(this, new IntervalsSet(tolerance)); } /** Build a region covering the whole space. * @return a region containing the instance (really a {@link * PolygonsSet PolygonsSet} instance) */ public PolygonsSet wholeSpace() { return new PolygonsSet(tolerance); } /** Get the offset (oriented distance) of a parallel line. *

This method should be called only for parallel lines otherwise * the result is not meaningful.

*

The offset is 0 if both lines are the same, it is * positive if the line is on the right side of the instance and * negative if it is on the left side, according to its natural * orientation.

* @param line line to check * @return offset of the line */ public double getOffset(final Line line) { return originOffset + (MathArrays.linearCombination(cos, line.cos, sin, line.sin) > 0 ? -line.originOffset : line.originOffset); } /** Get the offset (oriented distance) of a vector. * @param vector vector to check * @return offset of the vector */ public double getOffset(Vector vector) { return getOffset((Point) vector); } /** {@inheritDoc} */ public double getOffset(final Point point) { Vector2D p2 = (Vector2D) point; return MathArrays.linearCombination(sin, p2.getX(), -cos, p2.getY(), 1.0, originOffset); } /** {@inheritDoc} */ public boolean sameOrientationAs(final Hyperplane other) { final Line otherL = (Line) other; return MathArrays.linearCombination(sin, otherL.sin, cos, otherL.cos) >= 0.0; } /** Get one point from the plane. * @param abscissa desired abscissa for the point * @param offset desired offset for the point * @return one point in the plane, with given abscissa and offset * relative to the line */ public Vector2D getPointAt(final Vector1D abscissa, final double offset) { final double x = abscissa.getX(); final double dOffset = offset - originOffset; return new Vector2D(MathArrays.linearCombination(x, cos, dOffset, sin), MathArrays.linearCombination(x, sin, -dOffset, cos)); } /** Check if the line contains a point. * @param p point to check * @return true if p belongs to the line */ public boolean contains(final Vector2D p) { return FastMath.abs(getOffset(p)) < tolerance; } /** Compute the distance between the instance and a point. *

This is a shortcut for invoking FastMath.abs(getOffset(p)), * and provides consistency with what is in the * org.apache.commons.math3.geometry.euclidean.threed.Line class.

* * @param p to check * @return distance between the instance and the point * @since 3.1 */ public double distance(final Vector2D p) { return FastMath.abs(getOffset(p)); } /** Check the instance is parallel to another line. * @param line other line to check * @return true if the instance is parallel to the other line * (they can have either the same or opposite orientations) */ public boolean isParallelTo(final Line line) { return FastMath.abs(MathArrays.linearCombination(sin, line.cos, -cos, line.sin)) < tolerance; } /** Translate the line to force it passing by a point. * @param p point by which the line should pass */ public void translateToPoint(final Vector2D p) { originOffset = MathArrays.linearCombination(cos, p.getY(), -sin, p.getX()); } /** Get the angle of the line. * @return the angle of the line with respect to the abscissa axis */ public double getAngle() { return MathUtils.normalizeAngle(angle, FastMath.PI); } /** Set the angle of the line. * @param angle new angle of the line with respect to the abscissa axis */ public void setAngle(final double angle) { unlinkReverse(); this.angle = MathUtils.normalizeAngle(angle, FastMath.PI); cos = FastMath.cos(this.angle); sin = FastMath.sin(this.angle); } /** Get the offset of the origin. * @return the offset of the origin */ public double getOriginOffset() { return originOffset; } /** Set the offset of the origin. * @param offset offset of the origin */ public void setOriginOffset(final double offset) { unlinkReverse(); originOffset = offset; } /** Get a {@link org.apache.commons.math3.geometry.partitioning.Transform * Transform} embedding an affine transform. * @param transform affine transform to embed (must be inversible * otherwise the {@link * org.apache.commons.math3.geometry.partitioning.Transform#apply(Hyperplane) * apply(Hyperplane)} method would work only for some lines, and * fail for other ones) * @return a new transform that can be applied to either {@link * Vector2D Vector2D}, {@link Line Line} or {@link * org.apache.commons.math3.geometry.partitioning.SubHyperplane * SubHyperplane} instances * @exception MathIllegalArgumentException if the transform is non invertible * @deprecated as of 3.6, replaced with {@link #getTransform(double, double, double, double, double, double)} */ @Deprecated public static Transform getTransform(final AffineTransform transform) throws MathIllegalArgumentException { final double[] m = new double[6]; transform.getMatrix(m); return new LineTransform(m[0], m[1], m[2], m[3], m[4], m[5]); } /** Get a {@link org.apache.commons.math3.geometry.partitioning.Transform * Transform} embedding an affine transform. * @param cXX transform factor between input abscissa and output abscissa * @param cYX transform factor between input abscissa and output ordinate * @param cXY transform factor between input ordinate and output abscissa * @param cYY transform factor between input ordinate and output ordinate * @param cX1 transform addendum for output abscissa * @param cY1 transform addendum for output ordinate * @return a new transform that can be applied to either {@link * Vector2D Vector2D}, {@link Line Line} or {@link * org.apache.commons.math3.geometry.partitioning.SubHyperplane * SubHyperplane} instances * @exception MathIllegalArgumentException if the transform is non invertible * @since 3.6 */ public static Transform getTransform(final double cXX, final double cYX, final double cXY, final double cYY, final double cX1, final double cY1) throws MathIllegalArgumentException { return new LineTransform(cXX, cYX, cXY, cYY, cX1, cY1); } /** Class embedding an affine transform. *

This class is used in order to apply an affine transform to a * line. Using a specific object allow to perform some computations * on the transform only once even if the same transform is to be * applied to a large number of lines (for example to a large * polygon)./

*/ private static class LineTransform implements Transform { /** Transform factor between input abscissa and output abscissa. */ private double cXX; /** Transform factor between input abscissa and output ordinate. */ private double cYX; /** Transform factor between input ordinate and output abscissa. */ private double cXY; /** Transform factor between input ordinate and output ordinate. */ private double cYY; /** Transform addendum for output abscissa. */ private double cX1; /** Transform addendum for output ordinate. */ private double cY1; /** cXY * cY1 - cYY * cX1. */ private double c1Y; /** cXX * cY1 - cYX * cX1. */ private double c1X; /** cXX * cYY - cYX * cXY. */ private double c11; /** Build an affine line transform from a n {@code AffineTransform}. * @param cXX transform factor between input abscissa and output abscissa * @param cYX transform factor between input abscissa and output ordinate * @param cXY transform factor between input ordinate and output abscissa * @param cYY transform factor between input ordinate and output ordinate * @param cX1 transform addendum for output abscissa * @param cY1 transform addendum for output ordinate * @exception MathIllegalArgumentException if the transform is non invertible * @since 3.6 */ LineTransform(final double cXX, final double cYX, final double cXY, final double cYY, final double cX1, final double cY1) throws MathIllegalArgumentException { this.cXX = cXX; this.cYX = cYX; this.cXY = cXY; this.cYY = cYY; this.cX1 = cX1; this.cY1 = cY1; c1Y = MathArrays.linearCombination(cXY, cY1, -cYY, cX1); c1X = MathArrays.linearCombination(cXX, cY1, -cYX, cX1); c11 = MathArrays.linearCombination(cXX, cYY, -cYX, cXY); if (FastMath.abs(c11) < 1.0e-20) { throw new MathIllegalArgumentException(LocalizedFormats.NON_INVERTIBLE_TRANSFORM); } } /** {@inheritDoc} */ public Vector2D apply(final Point point) { final Vector2D p2D = (Vector2D) point; final double x = p2D.getX(); final double y = p2D.getY(); return new Vector2D(MathArrays.linearCombination(cXX, x, cXY, y, cX1, 1), MathArrays.linearCombination(cYX, x, cYY, y, cY1, 1)); } /** {@inheritDoc} */ public Line apply(final Hyperplane hyperplane) { final Line line = (Line) hyperplane; final double rOffset = MathArrays.linearCombination(c1X, line.cos, c1Y, line.sin, c11, line.originOffset); final double rCos = MathArrays.linearCombination(cXX, line.cos, cXY, line.sin); final double rSin = MathArrays.linearCombination(cYX, line.cos, cYY, line.sin); final double inv = 1.0 / FastMath.sqrt(rSin * rSin + rCos * rCos); return new Line(FastMath.PI + FastMath.atan2(-rSin, -rCos), inv * rCos, inv * rSin, inv * rOffset, line.tolerance); } /** {@inheritDoc} */ public SubHyperplane apply(final SubHyperplane sub, final Hyperplane original, final Hyperplane transformed) { final OrientedPoint op = (OrientedPoint) sub.getHyperplane(); final Line originalLine = (Line) original; final Line transformedLine = (Line) transformed; final Vector1D newLoc = transformedLine.toSubSpace(apply(originalLine.toSpace(op.getLocation()))); return new OrientedPoint(newLoc, op.isDirect(), originalLine.tolerance).wholeHyperplane(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy