com.nvidia.spark.rapids.CostBasedOptimizer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.12 Show documentation
Show all versions of rapids-4-spark_2.12 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import scala.collection.mutable.ListBuffer
import com.nvidia.spark.rapids.shims.{GlobalLimitShims, SparkShimImpl}
import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.expressions.{Alias, AttributeReference, Expression, GetStructField, WindowFrame, WindowSpecDefinition}
import org.apache.spark.sql.catalyst.plans.{JoinType, LeftAnti, LeftSemi}
import org.apache.spark.sql.execution.{GlobalLimitExec, LocalLimitExec, SparkPlan, TakeOrderedAndProjectExec, UnionExec}
import org.apache.spark.sql.execution.adaptive.{AdaptiveSparkPlanExec, QueryStageExec}
import org.apache.spark.sql.execution.aggregate.HashAggregateExec
import org.apache.spark.sql.execution.joins.{BroadcastHashJoinExec, ShuffledHashJoinExec, SortMergeJoinExec}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{DataType, StructType}
/**
* Optimizer that can operate on a physical query plan.
*/
trait Optimizer {
/**
* Apply optimizations to a query plan.
*
* @param conf Rapids configuration
* @param plan The plan to optimize
* @return A list of optimizations that were applied
*/
def optimize(conf: RapidsConf, plan: SparkPlanMeta[SparkPlan]): Seq[Optimization]
}
/**
* Experimental cost-based optimizer that aims to avoid moving sections of the plan to the GPU when
* it would be better to keep that part of the plan on the CPU. For example, we don't want to move
* data to the GPU just for a trivial projection and then have to move data back to the CPU on the
* next step.
*/
class CostBasedOptimizer extends Optimizer with Logging {
/**
* Walk the plan and determine CPU and GPU costs for each operator and then make decisions
* about whether operators should run on CPU or GPU.
*
* @param conf Rapids configuration
* @param plan The plan to optimize
* @return A list of optimizations that were applied
*/
def optimize(conf: RapidsConf, plan: SparkPlanMeta[SparkPlan]): Seq[Optimization] = {
logTrace("CBO optimizing plan")
val cpuCostModel = new CpuCostModel(conf)
val gpuCostModel = new GpuCostModel(conf)
val optimizations = new ListBuffer[Optimization]()
recursivelyOptimize(conf, cpuCostModel, gpuCostModel, plan, optimizations, finalOperator = true)
if (optimizations.isEmpty) {
logTrace(s"CBO finished optimizing plan. No optimizations applied.")
} else {
logTrace(s"CBO finished optimizing plan. " +
s"${optimizations.length} optimizations applied:\n\t${optimizations.mkString("\n\t")}")
}
optimizations.toSeq
}
/**
* Walk the plan and determine CPU and GPU costs for each operator and then make decisions
* about whether operators should run on CPU or GPU.
*
* @param plan The plan to optimize
* @param optimizations Accumulator to store the optimizations that are applied
* @param finalOperator Is this the final (root) operator? We have special behavior for this
* case because we need the final output to be on the CPU in row format
* @return Tuple containing (cpuCost, gpuCost) for the specified plan and the subset of the
* tree beneath it that is a candidate for optimization.
*/
private def recursivelyOptimize(
conf: RapidsConf,
cpuCostModel: CostModel,
gpuCostModel: CostModel,
plan: SparkPlanMeta[SparkPlan],
optimizations: ListBuffer[Optimization],
finalOperator: Boolean): (Double, Double) = {
// get the CPU and GPU cost of this operator (excluding cost of children)
val operatorCpuCost = cpuCostModel.getCost(plan)
val operatorGpuCost = gpuCostModel.getCost(plan)
// get the CPU and GPU cost of the child plan(s)
val childCosts = plan.childPlans
.map(child => recursivelyOptimize(
conf,
cpuCostModel,
gpuCostModel,
child,
optimizations,
finalOperator = false))
val (childCpuCosts, childGpuCosts) = childCosts.unzip
// calculate total (this operator + children)
val totalCpuCost = operatorCpuCost + childCpuCosts.sum
var totalGpuCost = operatorGpuCost + childGpuCosts.sum
logCosts(plan, "Operator costs", operatorCpuCost, operatorGpuCost)
logCosts(plan, "Operator + child costs", totalCpuCost, totalGpuCost)
plan.estimatedOutputRows = RowCountPlanVisitor.visit(plan)
// determine how many transitions between CPU and GPU are taking place between
// the child operators and this operator
val numTransitions = plan.childPlans
.count(canRunOnGpu(_) != canRunOnGpu(plan))
logCosts(plan, s"numTransitions=$numTransitions", totalCpuCost, totalGpuCost)
if (numTransitions > 0) {
// there are transitions between CPU and GPU so we need to calculate the transition costs
// and also make decisions based on those costs to see whether any parts of the plan would
// have been better off just staying on the CPU
// is this operator on the GPU?
if (canRunOnGpu(plan)) {
// at least one child is transitioning from CPU to GPU so we calculate the
// transition costs
val transitionCost = plan.childPlans
.filterNot(canRunOnGpu)
.map(transitionToGpuCost(conf, _)).sum
// if the GPU cost including transition is more than the CPU cost then avoid this
// transition and reset the GPU cost
if (operatorGpuCost + transitionCost > operatorCpuCost && !isExchangeOp(plan)) {
// avoid transition and keep this operator on CPU
optimizations.append(AvoidTransition(plan))
plan.costPreventsRunningOnGpu()
// reset GPU cost
totalGpuCost = totalCpuCost
logCosts(plan, s"Avoid transition to GPU", totalCpuCost, totalGpuCost)
} else {
// add transition cost to total GPU cost
totalGpuCost += transitionCost
logCosts(plan, s"transitionFromCpuCost=$transitionCost", totalCpuCost, totalGpuCost)
}
} else {
// at least one child is transitioning from GPU to CPU so we evaluate each of this
// child plans to see if it was worth running on GPU now that we have the cost of
// transitioning back to CPU
plan.childPlans.zip(childCosts).foreach {
case (child, childCosts) =>
val (childCpuCost, childGpuCost) = childCosts
val transitionCost = transitionToCpuCost(conf, child)
val childGpuTotal = childGpuCost + transitionCost
if (canRunOnGpu(child) && !isExchangeOp(child)
&& childGpuTotal > childCpuCost) {
// force this child plan back onto CPU
optimizations.append(ReplaceSection(
child, totalCpuCost, totalGpuCost))
child.recursiveCostPreventsRunningOnGpu()
}
}
// recalculate the transition costs because child plans may have changed
val transitionCost = plan.childPlans
.filter(canRunOnGpu)
.map(transitionToCpuCost(conf, _)).sum
totalGpuCost += transitionCost
logCosts(plan, s"transitionFromGpuCost=$transitionCost", totalCpuCost, totalGpuCost)
}
}
// special behavior if this is the final operator in the plan because we always have the
// cost of going back to CPU at the end
if (finalOperator && canRunOnGpu(plan)) {
val transitionCost = transitionToCpuCost(conf, plan)
totalGpuCost += transitionCost
logCosts(plan, s"final operator, transitionFromGpuCost=$transitionCost",
totalCpuCost, totalGpuCost)
}
if (totalGpuCost > totalCpuCost) {
// we have reached a point where we have transitioned onto GPU for part of this
// plan but with no benefit from doing so, so we want to undo this and go back to CPU
if (canRunOnGpu(plan) && !isExchangeOp(plan)) {
// this plan would have been on GPU so we move it and onto CPU and recurse down
// until we reach a part of the plan that is already on CPU and then stop
optimizations.append(ReplaceSection(plan, totalCpuCost, totalGpuCost))
plan.recursiveCostPreventsRunningOnGpu()
// reset the costs because this section of the plan was not moved to GPU
totalGpuCost = totalCpuCost
logCosts(plan, s"ReplaceSection: ${plan}", totalCpuCost, totalGpuCost)
}
}
if (!canRunOnGpu(plan) || isExchangeOp(plan)) {
// reset the costs because this section of the plan was not moved to GPU
totalGpuCost = totalCpuCost
logCosts(plan, s"Reset costs (not on GPU / exchange)", totalCpuCost, totalGpuCost)
}
logCosts(plan, "END", totalCpuCost, totalGpuCost)
(totalCpuCost, totalGpuCost)
}
private def logCosts(
plan: SparkPlanMeta[_],
message: String,
cpuCost: Double,
gpuCost: Double): Unit = {
val sign = if (cpuCost == gpuCost) {
"=="
} else if (cpuCost < gpuCost) {
"<"
} else {
">"
}
logTrace(s"CBO [${plan.wrapped.getClass.getSimpleName}] $message: " +
s"cpuCost=$cpuCost $sign gpuCost=$gpuCost)")
}
private def canRunOnGpu(plan: SparkPlanMeta[_]): Boolean = plan.wrapped match {
case _: AdaptiveSparkPlanExec =>
// this is hacky but AdaptiveSparkPlanExec is always tagged as "cannot replace" and
// there are no child plans to inspect, so we just assume that the plan is running
// on GPU
true
case _ => plan.canThisBeReplaced
}
private def transitionToGpuCost(conf: RapidsConf, plan: SparkPlanMeta[SparkPlan]): Double = {
val rowCount = RowCountPlanVisitor.visit(plan).map(_.toDouble)
.getOrElse(conf.defaultRowCount.toDouble)
val dataSize = MemoryCostHelper.estimateGpuMemory(plan.wrapped.schema, rowCount)
conf.getGpuOperatorCost("GpuRowToColumnarExec").getOrElse(0d) * rowCount +
MemoryCostHelper.calculateCost(dataSize, conf.cpuReadMemorySpeed) +
MemoryCostHelper.calculateCost(dataSize, conf.gpuWriteMemorySpeed)
}
private def transitionToCpuCost(conf: RapidsConf, plan: SparkPlanMeta[SparkPlan]): Double = {
val rowCount = RowCountPlanVisitor.visit(plan).map(_.toDouble)
.getOrElse(conf.defaultRowCount.toDouble)
val dataSize = MemoryCostHelper.estimateGpuMemory(plan.wrapped.schema, rowCount)
conf.getGpuOperatorCost("GpuColumnarToRowExec").getOrElse(0d) * rowCount +
MemoryCostHelper.calculateCost(dataSize, conf.gpuReadMemorySpeed) +
MemoryCostHelper.calculateCost(dataSize, conf.cpuWriteMemorySpeed)
}
/**
* Determines whether the specified operator is an exchange, or will read from an
* exchange / query stage. CBO needs to avoid moving these operators back onto
* CPU because it could result in an invalid plan.
*/
private def isExchangeOp(plan: SparkPlanMeta[_]): Boolean = {
// if the child query stage already executed on GPU then we need to keep the
// next operator on GPU in these cases
SparkShimImpl.isExchangeOp(plan)
}
}
/**
* The cost model is behind a trait so that we can consider making this pluggable in the future
* so that users can override the cost model to suit specific use cases.
*/
trait CostModel {
/**
* Determine the CPU and GPU cost for an individual operator.
* @param plan Operator
* @return (cpuCost, gpuCost)
*/
def getCost(plan: SparkPlanMeta[_]): Double
}
class CpuCostModel(conf: RapidsConf) extends CostModel {
def getCost(plan: SparkPlanMeta[_]): Double = {
val rowCount = RowCountPlanVisitor.visit(plan).map(_.toDouble)
.getOrElse(conf.defaultRowCount.toDouble)
val operatorCost = plan.conf
.getCpuOperatorCost(plan.wrapped.getClass.getSimpleName)
.getOrElse(conf.defaultCpuOperatorCost) * rowCount
val exprEvalCost = plan.childExprs
.map(expr => exprCost(expr.asInstanceOf[BaseExprMeta[Expression]], rowCount))
.sum
operatorCost + exprEvalCost
}
private def exprCost[INPUT <: Expression](expr: BaseExprMeta[INPUT], rowCount: Double): Double = {
if (MemoryCostHelper.isExcludedFromCost(expr)) {
return 0d
}
val memoryReadCost = expr.wrapped match {
case _: Alias =>
// alias has no cost, we just evaluate the cost of the aliased expression
exprCost(expr.childExprs.head.asInstanceOf[BaseExprMeta[Expression]], rowCount)
case _: AttributeReference | _: GetStructField =>
MemoryCostHelper.calculateCost(MemoryCostHelper.estimateGpuMemory(
expr.typeMeta.dataType, nullable = false, rowCount), conf.cpuReadMemorySpeed)
case _ =>
expr.childExprs
.map(e => exprCost(e.asInstanceOf[BaseExprMeta[Expression]], rowCount)).sum
}
// the output of evaluating the expression needs to be written out to rows
val memoryWriteCost = MemoryCostHelper.calculateCost(MemoryCostHelper.estimateGpuMemory(
expr.typeMeta.dataType, nullable = false, rowCount), conf.cpuWriteMemorySpeed)
// optional additional per-row overhead of evaluating the expression
val exprEvalCost = rowCount *
expr.conf.getCpuExpressionCost(expr.getClass.getSimpleName)
.getOrElse(conf.defaultCpuExpressionCost)
exprEvalCost + memoryReadCost + memoryWriteCost
}
}
class GpuCostModel(conf: RapidsConf) extends CostModel {
def getCost(plan: SparkPlanMeta[_]): Double = {
val rowCount = RowCountPlanVisitor.visit(plan).map(_.toDouble)
.getOrElse(conf.defaultRowCount.toDouble)
val operatorCost = plan.conf
.getGpuOperatorCost(plan.wrapped.getClass.getSimpleName)
.getOrElse(conf.defaultGpuOperatorCost) * rowCount
val exprEvalCost = plan.childExprs
.map(expr => exprCost(expr.asInstanceOf[BaseExprMeta[Expression]], rowCount))
.sum
operatorCost + exprEvalCost
}
private def exprCost[INPUT <: Expression](expr: BaseExprMeta[INPUT], rowCount: Double): Double = {
if (MemoryCostHelper.isExcludedFromCost(expr)) {
return 0d
}
var memoryReadCost = 0d
var memoryWriteCost = 0d
expr.wrapped match {
case _: Alias =>
// alias has no cost, we just evaluate the cost of the aliased expression
exprCost(expr.childExprs.head.asInstanceOf[BaseExprMeta[Expression]], rowCount)
case _: AttributeReference =>
// referencing an existing column on GPU is almost free since we're
// just increasing a reference count and not actually copying any data
case _ =>
memoryReadCost = expr.childExprs
.map(e => exprCost(e.asInstanceOf[BaseExprMeta[Expression]], rowCount)).sum
memoryWriteCost += MemoryCostHelper.calculateCost(MemoryCostHelper.estimateGpuMemory(
expr.typeMeta.dataType, nullable = false, rowCount), conf.gpuWriteMemorySpeed)
}
// optional additional per-row overhead of evaluating the expression
val exprEvalCost = rowCount *
expr.conf.getGpuExpressionCost(expr.getClass.getSimpleName)
.getOrElse(conf.defaultGpuExpressionCost)
exprEvalCost + memoryReadCost + memoryWriteCost
}
}
object MemoryCostHelper {
private val GIGABYTE = 1024d * 1024d * 1024d
/**
* Calculate the cost (time) of transferring data at a given memory speed.
*
* @param dataSize Size of data to transfer, in bytes.
* @param memorySpeed Memory speed, in GB/s.
* @return Time in seconds.
*/
def calculateCost(dataSize: Long, memorySpeed: Double): Double = {
(dataSize / GIGABYTE) / memorySpeed
}
def isExcludedFromCost[INPUT <: Expression](expr: BaseExprMeta[INPUT]) = {
expr.wrapped match {
case _: WindowSpecDefinition | _: WindowFrame =>
// Window expressions are Unevaluable and accessing dataType causes an exception
true
case _ => false
}
}
def estimateGpuMemory(schema: StructType, rowCount: Double): Long = {
// cardinality estimates tend to grow to very large numbers with nested joins so
// we apply a maximum to the row count that we use when estimating data sizes in
// order to avoid integer overflow
val safeRowCount = rowCount.min(Int.MaxValue).toLong
GpuBatchUtils.estimateGpuMemory(schema, safeRowCount)
}
def estimateGpuMemory(dataType: Option[DataType], nullable: Boolean, rowCount: Double): Long = {
dataType match {
case Some(dt) =>
// cardinality estimates tend to grow to very large numbers with nested joins so
// we apply a maximum to the row count that we use when estimating data sizes in
// order to avoid integer overflow
val safeRowCount = rowCount.min(Int.MaxValue).toLong
GpuBatchUtils.estimateGpuMemory(dt, nullable, safeRowCount)
case None =>
throw new UnsupportedOperationException("Data type is None")
}
}
}
/**
* Estimate the number of rows that an operator will output. Note that these row counts are
* the aggregate across all output partitions.
*
* Logic is based on Spark's SizeInBytesOnlyStatsPlanVisitor. which operates on logical plans
* and only computes data sizes, not row counts.
*/
object RowCountPlanVisitor {
def visit(plan: SparkPlanMeta[_]): Option[BigInt] = plan.wrapped match {
case p: QueryStageExec =>
p.getRuntimeStatistics.rowCount
case _: GlobalLimitExec =>
GlobalLimitShims.visit(plan.asInstanceOf[SparkPlanMeta[GlobalLimitExec]])
case LocalLimitExec(limit, _) =>
// LocalLimit applies the same limit for each partition
val n = limit * plan.wrapped.asInstanceOf[SparkPlan]
.outputPartitioning.numPartitions
visit(plan.childPlans.head).map(_.min(n)).orElse(Some(n))
case p: TakeOrderedAndProjectExec =>
visit(plan.childPlans.head).map(_.min(p.limit)).orElse(Some(p.limit))
case p: HashAggregateExec if p.groupingExpressions.isEmpty =>
Some(1)
case p: SortMergeJoinExec =>
estimateJoin(plan, p.joinType)
case p: ShuffledHashJoinExec =>
estimateJoin(plan, p.joinType)
case p: BroadcastHashJoinExec =>
estimateJoin(plan, p.joinType)
case _: UnionExec =>
Some(plan.childPlans.flatMap(visit).sum)
case _ =>
default(plan)
}
private def estimateJoin(plan: SparkPlanMeta[_], joinType: JoinType): Option[BigInt] = {
joinType match {
case LeftAnti | LeftSemi =>
// LeftSemi and LeftAnti won't ever be bigger than left
visit(plan.childPlans.head)
case _ =>
default(plan)
}
}
/**
* The default row count is the product of the row count of all child plans.
*/
private def default(p: SparkPlanMeta[_]): Option[BigInt] = {
val one = BigInt(1)
val product = p.childPlans.map(visit)
.filter(_.exists(_ > 0L))
.map(_.get)
.product
if (product == one) {
// product will be 1 when there are no child plans
None
} else {
Some(product)
}
}
}
sealed abstract class Optimization
case class AvoidTransition[INPUT <: SparkPlan](plan: SparkPlanMeta[INPUT]) extends Optimization {
override def toString: String = s"It is not worth moving to GPU for operator: " +
s"${Explain.format(plan)}"
}
case class ReplaceSection[INPUT <: SparkPlan](
plan: SparkPlanMeta[INPUT],
totalCpuCost: Double,
totalGpuCost: Double) extends Optimization {
override def toString: String = s"It is not worth keeping this section on GPU; " +
s"gpuCost=$totalGpuCost, cpuCost=$totalCpuCost:\n${Explain.format(plan)}"
}
object Explain {
def format(plan: SparkPlanMeta[_]): String = {
plan.wrapped match {
case p: SparkPlan => p.simpleString(SQLConf.get.maxToStringFields)
case other => other.toString
}
}
def formatTree(plan: SparkPlanMeta[_]): String = {
val b = new StringBuilder
formatTree(plan, b, "")
b.toString
}
def formatTree(plan: SparkPlanMeta[_], b: StringBuilder, indent: String): Unit = {
b.append(indent)
b.append(format(plan))
b.append('\n')
plan.childPlans.filter(_.canThisBeReplaced)
.foreach(child => formatTree(child, b, indent + " "))
}
}