com.nvidia.spark.rapids.GpuRunnableCommandExec.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.12 Show documentation
Show all versions of rapids-4-spark_2.12 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
/*
* Copyright (c) 2023-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.net.URI
import com.nvidia.spark.rapids.shims.{ShimUnaryCommand, ShimUnaryExecNode}
import org.apache.hadoop.conf.Configuration
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SaveMode, SparkSession}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Attribute
import org.apache.spark.sql.execution.{SparkPlan, SQLExecution}
import org.apache.spark.sql.execution.command.RunnableCommand
import org.apache.spark.sql.execution.metric.{SQLMetric, SQLMetrics}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.rapids.GpuWriteJobStatsTracker
import org.apache.spark.sql.rapids.shims.RapidsErrorUtils
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.util.SerializableConfiguration
/**
* An extension of `RunnableCommand` that allows columnar execution.
*/
trait GpuRunnableCommand extends RunnableCommand with ShimUnaryCommand {
lazy val basicMetrics: Map[String, SQLMetric] = GpuWriteJobStatsTracker.basicMetrics
lazy val taskMetrics: Map[String, SQLMetric] = GpuWriteJobStatsTracker.taskMetrics
override lazy val metrics: Map[String, SQLMetric] = basicMetrics ++ taskMetrics
override final def run(sparkSession: SparkSession): Seq[Row] =
throw new UnsupportedOperationException(
s"${getClass.getCanonicalName} does not support row-based execution")
def runColumnar(sparkSession: SparkSession, child: SparkPlan): Seq[ColumnarBatch]
def gpuWriteJobStatsTracker(
hadoopConf: Configuration): GpuWriteJobStatsTracker = {
val serializableHadoopConf = new SerializableConfiguration(hadoopConf)
GpuWriteJobStatsTracker(serializableHadoopConf, this.basicMetrics, this.taskMetrics)
}
def requireSingleBatch: Boolean
}
object GpuRunnableCommand {
private val allowNonEmptyLocationInCTASKey = "spark.sql.legacy.allowNonEmptyLocationInCTAS"
private def getAllowNonEmptyLocationInCTAS: Boolean = {
// config only exists in Spark 3.2+, so looking it up manually for now.
val key = allowNonEmptyLocationInCTASKey
val v = SQLConf.get.getConfString(key, "false")
try {
v.trim.toBoolean
} catch {
case _: IllegalArgumentException =>
throw new IllegalArgumentException(s"$key should be boolean, but was $v")
}
}
def assertEmptyRootPath(tablePath: URI, saveMode: SaveMode, hadoopConf: Configuration): Unit = {
if (saveMode == SaveMode.ErrorIfExists && !getAllowNonEmptyLocationInCTAS) {
val filePath = new org.apache.hadoop.fs.Path(tablePath)
val fs = filePath.getFileSystem(hadoopConf)
if (fs.exists(filePath) &&
fs.getFileStatus(filePath).isDirectory &&
fs.listStatus(filePath).length != 0) {
throw RapidsErrorUtils.
createTableAsSelectWithNonEmptyDirectoryError(tablePath.toString,
allowNonEmptyLocationInCTASKey)
}
}
}
/**
* When execute CTAS operators, the write can be delegated to a sub-command
* and we need to propagate the metrics from that sub-command to the
* parent command.
* Derived from Spark's DataWritingCommand.propagateMetrics
*/
def propogateMetrics(
sparkContext: SparkContext,
command: GpuDataWritingCommand,
metrics: Map[String, SQLMetric]): Unit = {
command.metrics.foreach { case (key, metric) => metrics(key).set(metric.value) }
SQLMetrics.postDriverMetricUpdates(sparkContext,
sparkContext.getLocalProperty(SQLExecution.EXECUTION_ID_KEY),
metrics.values.toSeq)
}
}
case class GpuRunnableCommandExec(cmd: GpuRunnableCommand, child: SparkPlan)
extends ShimUnaryExecNode with GpuExec {
override lazy val allMetrics: Map[String, GpuMetric] = GpuMetric.wrap(cmd.metrics)
private lazy val sideEffectResult: Seq[ColumnarBatch] =
cmd.runColumnar(sparkSession, child)
override def output: Seq[Attribute] = cmd.output
override def nodeName: String = "Execute " + cmd.nodeName
// override the default one, otherwise the `cmd.nodeName` will appear twice from simpleString
override def argString(maxFields: Int): String = cmd.argString(maxFields)
override def executeCollect(): Array[InternalRow] = throw new UnsupportedOperationException(
s"${getClass.getCanonicalName} does not support row-based execution")
override def executeToIterator: Iterator[InternalRow] = throw new UnsupportedOperationException(
s"${getClass.getCanonicalName} does not support row-based execution")
override def executeTake(limit: Int): Array[InternalRow] =
throw new UnsupportedOperationException(
s"${getClass.getCanonicalName} does not support row-based execution")
protected override def doExecute(): RDD[InternalRow] = throw new UnsupportedOperationException(
s"${getClass.getCanonicalName} does not support row-based execution")
override protected def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
sparkContext.parallelize(sideEffectResult, 1)
}
// Need single batch in some cases
override def childrenCoalesceGoal: Seq[CoalesceGoal] =
if (cmd.requireSingleBatch) {
Seq(RequireSingleBatch)
} else {
Seq(null)
}
}