com.nvidia.spark.rapids.python.PythonWorkerSemaphore.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.12 Show documentation
Show all versions of rapids-4-spark_2.12 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids.python
import java.util.concurrent.{ConcurrentHashMap, Semaphore}
import com.nvidia.spark.rapids.RapidsConf
import com.nvidia.spark.rapids.ScalableTaskCompletion.onTaskCompletion
import com.nvidia.spark.rapids.python.PythonConfEntries.CONCURRENT_PYTHON_WORKERS
import org.apache.commons.lang3.mutable.MutableInt
import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.internal.Logging
/*
* PythonWorkerSemaphore is used to limit the number of Python workers(processes) to be started
* by an executor.
*
* This PythonWorkerSemaphore will not initialize the GPU, different from GpuSemaphore. Since
* tasks calling the API `acquireIfNecessary` are supposed not to use the GPU directly, but
* delegate the permits to the Python workers respectively.
*
* Call `acquireIfNecessary` or `releaseIfNecessary` directly when needed, since the inner
* semaphore will be initialized implicitly, but need to call `shutdown` explicitly to release
* the inner semaphore when no longer needed.
*
*/
object PythonWorkerSemaphore extends Logging {
private lazy val rapidsConf = new RapidsConf(SparkEnv.get.conf)
private lazy val workersPerGpu = rapidsConf.get(CONCURRENT_PYTHON_WORKERS)
private lazy val enabled = workersPerGpu > 0
// DO NOT ACCESS DIRECTLY! Use `getInstance` instead.
@volatile
private var instance: PythonWorkerSemaphore = _
private def getInstance(): PythonWorkerSemaphore = {
if (instance == null) {
synchronized {
if (instance == null) {
logDebug(s"Initialize the python workers semaphore with number: $workersPerGpu")
instance = new PythonWorkerSemaphore(workersPerGpu)
}
}
}
instance
}
/*
* Tasks must call this when they begin to start a Python worker who will use GPU.
* If the task has not already acquired the GPU semaphore then it is acquired,
* blocking if necessary.
* NOTE: A task completion listener will automatically be installed to ensure
* the semaphore is always released by the time the task completes.
*/
def acquireIfNecessary(context: TaskContext): Unit = {
if (enabled && context != null) {
getInstance.acquireIfNecessary(context)
}
}
/*
* Tasks must call this when they are finished using the GPU.
*/
def releaseIfNecessary(context: TaskContext): Unit = {
if (enabled && context != null) {
getInstance.releaseIfNecessary(context)
}
}
/*
* Release the inner semaphore.
* NOTE: This does not wait for active tasks to release!
*/
def shutdown(): Unit = synchronized {
if (instance != null) {
instance.shutdown()
instance = null
}
}
}
private final class PythonWorkerSemaphore(tasksPerGpu: Int) extends Logging {
private val semaphore = new Semaphore(tasksPerGpu)
// Map to track which tasks have acquired the semaphore.
private val activeTasks = new ConcurrentHashMap[Long, MutableInt]
def acquireIfNecessary(context: TaskContext): Unit = {
val taskAttemptId = context.taskAttemptId()
val refs = activeTasks.get(taskAttemptId)
if (refs == null) {
// first time this task has been seen
activeTasks.put(taskAttemptId, new MutableInt(1))
onTaskCompletion(tc => completeTask(tc))
} else {
refs.increment()
}
logDebug(s"Task $taskAttemptId acquiring GPU for python worker")
semaphore.acquire()
}
def releaseIfNecessary(context: TaskContext): Unit = {
val taskAttemptId = context.taskAttemptId()
val refs = activeTasks.get(taskAttemptId)
if (refs != null && refs.getValue > 0) {
logDebug(s"Task $taskAttemptId releasing GPU for python worker")
semaphore.release(refs.getValue)
refs.setValue(0)
}
}
def completeTask(context: TaskContext): Unit = {
val taskAttemptId = context.taskAttemptId()
val refs = activeTasks.remove(taskAttemptId)
if (refs == null) {
throw new IllegalStateException(s"Completion of unknown task $taskAttemptId")
}
if (refs.getValue > 0) {
logDebug(s"Task $taskAttemptId releasing all GPU resources for python worker")
semaphore.release(refs.getValue)
}
}
def shutdown(): Unit = {
if (!activeTasks.isEmpty) {
logDebug(s"Shutting down Python worker semaphore with ${activeTasks.size} " +
s"tasks still registered")
}
}
}